Advertisement
SPECIAL COMMUNICATION|Articles in Press

Skeletal Muscle Dysfunction in People With Multiple Sclerosis: A Physiological Target for Improving Physical Function and Mobility

Published:November 17, 2022DOI:https://doi.org/10.1016/j.apmr.2022.10.009

      Abstract

      Impaired mobility is amongst the most debilitating symptoms reported by people with multiple sclerosis (MS). Historically, it has been viewed that walking impairments in people with MS are directly caused by the physical damage to the neurons in the central nervous system (CNS) which results from the immunopathology of MS. However, research from over the past 4 decades has revealed that physical function in people with MS is also affected by skeletal muscle dysfunction characterized by a reduced capacity to produce, regulate, and sustain the force-generating muscle contractions that propel human movement. While the immediate CNS damage caused by MS can alter the neural activation of muscle by disrupting neuromotor transmission, chronic reductions in mobility and extreme fatigue can lead to physically inactive lifestyles that negatively affect skeletal muscle through mechanisms of deconditioning. Consequently, people with MS can experience alterations in activation patterns, muscle mass and tissue composition, contractility, metabolism, and perfusion that contribute to reductions in muscle function that ultimately impair key physical functions such as walking. This article provides an overview of the cellular mechanisms that contribute to skeletal muscle dysfunction in people with MS and a discussion of the current evidence suggesting that skeletal muscle may be a key physiological target for interventions aiming to improve mobility in this population. We specifically highlight recent evidence demonstrating the potential for rehabilitation and exercise interventions to induce muscle plasticity in people with MS who have moderate to severe levels of disability. In conclusion, we discuss future directions in basic science and clinical research that may advance our understanding of muscle dysfunction in MS and lead to the development of more precise and effective treatment strategies.

      Keywords

      List of abbreviations:

      BWSTT (body weight supported treadmill training), CNS (central nervous system), EMG (electromyography), FES (functional electrical stimulation), MS (multiple sclerosis), MVC (maximal voluntary contraction), NIRS (near infrared spectroscopy), RAGT (robot-assisted gait training)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Archives of Physical Medicine and Rehabilitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Steenwijk MD
        • Geurts JJG
        • Daams M
        • et al.
        Cortical atrophy patterns in multiple sclerosis are non-random and clinically relevant.
        Brain. 2016; 139: 115-126
        • Steenwijk MD
        • Vrenken H
        • Jonkman LE
        • et al.
        High-resolution T1-relaxation time mapping displays subtle, clinically relevant, gray matter damage in long-standing multiple sclerosis.
        Mult Scler. 2016; 22: 1279-1288
        • Karussis D.
        The diagnosis of multiple sclerosis and the various related demyelinating syndromes: a critical review.
        J Autoimmun. 2014; 48-49: 134-142
        • Shoeibi A
        • Khodatars M
        • Jafari M
        • et al.
        Applications of deep learning techniques for automated multiple sclerosis detection using magnetic resonance imaging: a review.
        Comput Biol Med. 2021; 136104697
        • Higginson IJ
        • Hart S
        • Silber E
        • Burman R
        • Edmonds P.
        Symptom prevalence and severity in people severely affected by multiple sclerosis.
        J Palliat Care. 2006; 22: 158-165
        • Johansson S
        • Ytterberg C
        • Claesson IM
        • et al.
        High concurrent presence of disability in multiple sclerosis. Associations with perceived health.
        J Neurol. 2007; 254: 767-773
        • Swingler RJ
        • Compston DA.
        The morbidity of multiple sclerosis.
        Q J Med. 1992; 83: 325-337
        • Newland PK
        • Fearing A
        • Riley M
        • Neath A.
        Symptom clusters in women with relapsing-remitting multiple sclerosis.
        J Neurosci Nurs. 2012; 44: 66-71
        • Larocca NG.
        Impact of walking impairment in multiple sclerosis: perspectives of patients and care partners.
        Patient. 2011; 4: 189-201
        • Motl RW
        • Learmonth YC.
        Neurological disability and its association with walking impairment in multiple sclerosis: brief review.
        Neurodegener Dis Manag. 2014; 4: 491-500
        • Hobart JC
        • Riazi A
        • Lamping DL
        • Fitzpatrick R
        • Thompson AJ.
        Measuring the impact of MS on walking ability: the 12-Item MS Walking Scale (MSWS-12).
        Neurology. 2003; 60: 31-36
        • Lerdal A
        • Celius EG
        • Krupp L
        • Dahl AA.
        A prospective study of patterns of fatigue in multiple sclerosis.
        Eur J Neurol. 2007; 14: 1338-1343
        • Confavreux C
        • Vukusic S
        • Adeleine P.
        Early clinical predictors and progression of irreversible disability in multiple sclerosis: an amnesic process.
        Brain. 2003; 126: 770-782
        • Rovira À
        • León A.
        MR in the diagnosis and monitoring of multiple sclerosis: an overview.
        Eur J Radiol. 2008; 67: 409-414
        • King EM
        • Sabatier MJ
        • Hoque M
        • Kesar TM
        • Backus D
        • Borich MR.
        Myelin status is associated with change in functional mobility following slope walking in people with multiple sclerosis.
        Mult Scler J Exp Transl Clin. 2018; 42055217318773540
        • Daams M
        • Steenwijk MD
        • Wattjes MP
        • et al.
        Unraveling the neuroimaging predictors for motor dysfunction in long-standing multiple sclerosis.
        Neurology. 2015; 85: 248-255
        • de Haan A
        • de Ruiter CJ
        • van der Woude LH
        • Jongen PJ.
        Contractile properties and fatigue of quadriceps muscles in multiple sclerosis.
        Muscle Nerve. 2000; 23: 1534-1541
        • Lencioni T
        • Jonsdottir J
        • Cattaneo D
        • et al.
        Are modular activations altered in lower limb muscles of persons with multiple sclerosis during walking? Evidence from muscle synergies and biomechanical analysis.
        Front Hum Neurosci. 2016; 10: 620
        • Hansen D
        • Wens I
        • Vandenabeele F
        • Verboven K
        • Eijnde BO.
        Altered signaling for mitochondrial and myofibrillar biogenesis in skeletal muscles of patients with multiple sclerosis.
        Transl Res. 2015; 166: 70-79
        • Wens I
        • Dalgas U
        • Vandenabeele F
        • Krekels M
        • Grevendonk L
        • Eijnde BO.
        Multiple sclerosis affects skeletal muscle characteristics.
        PLoS One. 2014; 9e108158
        • Garner DJ
        • Widrick JJ.
        Cross-bridge mechanisms of muscle weakness in multiple sclerosis.
        Muscle Nerve. 2003; 27: 456-464
        • Ng AV
        • Miller RG
        • Gelinas D
        • Kent-Braun JA.
        Functional relationships of central and peripheral muscle alterations in multiple sclerosis.
        Muscle Nerve. 2004; 29: 843-852
        • Willingham TB
        • Backus D
        • McCully KK.
        Muscle dysfunction and walking impairment in women with multiple sclerosis.
        Int J MS Care. 2019; 21: 249-256
        • Kent-Braun JA
        • Ng AV
        • Castro M
        • et al.
        Strength, skeletal muscle composition, and enzyme activity in multiple sclerosis.
        J Appl Physiol (1985). 1997; 83: 1998-2004
        • Ramari C
        • Hvid LG
        • de David AC
        • Dalgas U.
        The importance of lower-extremity muscle strength for lower-limb functional capacity in multiple sclerosis: systematic review.
        Ann Phys Rehabil Med. 2020; 63: 123-137
        • Sandroff BM
        • Dlugonski D
        • Weikert M
        • Suh Y
        • Balantrapu S
        • Motl RW.
        Physical activity and multiple sclerosis: new insights regarding inactivity.
        Acta Neurol Scand. 2012; 126: 256-262
        • Sandroff BM
        • Klaren RE
        • Motl RW.
        Relationships among physical inactivity, deconditioning, and walking impairment in persons with multiple sclerosis.
        J Neurol Phys Ther. 2015; 39: 103-110
        • Klassen SA
        • Abreu SD
        • Greaves DK
        • et al.
        Long-duration bed rest modifies sympathetic neural recruitment strategies in male and female participants.
        J Appl Physiol (1985). 2018; 124: 661-671
        • Hortobágyi T
        • Dempsey L
        • Fraser D
        • et al.
        Changes in muscle strength, muscle fibre size and myofibrillar gene expression after immobilization and retraining in humans.
        J Physiol. 2000; 524: 293-304
        • Manganotti P
        • Stella AB
        • Ajcevic M
        • et al.
        Peripheral nerve adaptations to 10 days of horizontal bed rest in healthy young adult males.
        Am J Physiol Regul Integr Comp Physiol. 2021; 321: R495-R503
        • Motl RW.
        Physical activity and irreversible disability in multiple sclerosis.
        Exerc Sport Sci Rev. 2010; 38: 186-191
        • Motl RW
        • Arnett PA
        • Smith MM
        • Barwick FH
        • Ahlstrom B
        • Stover EJ.
        Worsening of symptoms is associated with lower physical activity levels in individuals with multiple sclerosis.
        Mult Scler. 2008; 14: 140-142
        • Manfredini F
        • Straudi S
        • Lamberti N
        • et al.
        Rehabilitation improves mitochondrial energetics in progressive multiple sclerosis: the significant role of robot-assisted gait training and of the personalized intensity.
        Diagnostics (Basel). 2020; 10: 834
        • Beer S.
        • Aschbacher B
        • Manoglou D
        • Gamper E
        • Kool J
        • Kesselring J.
        Robot-assisted gait training in multiple sclerosis: a pilot randomized trial.
        Mult Scler. 2008; 14: 231-236
        • Pilutti LA
        • Paulseth JE
        • Dove C
        • Jiang S
        • Rathbone MP
        • Hicks AL.
        Exercise training in progressive multiple sclerosis: a comparison of recumbent stepping and body weight-supported treadmill training.
        Int J MS Care. 2016; 18: 221-229
        • Skjerbæk AG
        • Næsby M
        • Lützen K
        • et al.
        Endurance training is feasible in severely disabled patients with progressive multiple sclerosis.
        Mult Scler. 2014; 20: 627-630
        • Backus D
        • Burdett B
        • Hawkins L
        • Manella C
        • McCully KK
        • Sweatman M.
        Outcomes after functional electrical stimulation cycle training in individuals with multiple sclerosis who are nonambulatory.
        Int J MS Care. 2017; 19: 113-121
        • Backus D
        • Moldavskiy M
        • Sweatman WM.
        Effects of functional electrical stimulation cycling on fatigue and quality of life in people with multiple sclerosis who are nonambulatory.
        Int J MS Care. 2020; 22: 193-200
        • Reynolds MA
        • McCully K
        • Burdett B
        • Manella C
        • Hawkins L
        • Backus D.
        Pilot study: evaluation of the effect of functional electrical stimulation cycling on muscle metabolism in nonambulatory people with multiple sclerosis.
        Arch Phys Med Rehabil. 2015; 96: 627-632
        • Williams J
        • Moldavskiy M
        • Bauer K
        • et al.
        Safety and feasibility of various functional electrical stimulation cycling protocols in individuals with multiple sclerosis who are nonambulatory.
        Arch Rehabil Res Clin Transl. 2020; 2100045
        • Snyder KJ
        • Patsakos E
        • White J
        • Ditor DS.
        Accessible exercise equipment and individuals with multiple sclerosis: aerobic demands and preferences.
        NeuroRehabilitation. 2019; 45: 359-367
        • Yeh SW
        • Lin LF
        • Tam KW
        • Tsai CP
        • Hong CH
        • Kuan YC.
        Efficacy of robot-assisted gait training in multiple sclerosis: a systematic review and meta-analysis.
        Mult Scler Relat Disord. 2020; 41102034
        • Willingham TB
        • Melbourn J
        • Moldavskiy M
        • McCully KK
        • Backus D.
        Effects of treadmill training on muscle oxidative capacity and endurance in people with multiple sclerosis with significant walking limitations.
        Int J MS Care. 2019; 21: 166
        • Mukund K
        • Subramaniam S.
        Skeletal muscle: a review of molecular structure and function, in health and disease.
        Wiley Interdiscip Rev Syst Biol Med. 2020; 12: e1462
        • Chen L
        • Nelson DR
        • Zhao Y
        • Cui Z
        • Johnston JA.
        Relationship between muscle mass and muscle strength, and the impact of comorbidities: a population-based, cross-sectional study of older adults in the United States.
        BMC Geriatr. 2013; 13: 1-8
        • Schiaffino S
        • Reggiani C.
        Fiber types in mammalian skeletal muscles.
        Physiol Rev. 2011; 91: 1447-1531
        • Suchomel TJ
        • Nimphius S
        • Bellon CR
        • Stone MH.
        The importance of muscular strength: training considerations.
        Sports Med. 2018; 48: 765-785
        • Bleck CKE
        • Kim Y
        • Willingham TB
        • Glancy B.
        Subcellular connectomic analyses of energy networks in striated muscle.
        Nat Commun. 2018; 9: 5111
        • Willingham TB
        • Kim Y
        • Lindberg E
        • Bleck CKE
        • Glancy B.
        The unified myofibrillar matrix for force generation in muscle.
        Nat Commun. 2020; 11: 3722
        • Willingham TB
        • Zhang Y
        • Andreoni A
        • Knutson JR
        • Lee DY
        • Glancy B.
        MitoRACE: evaluating mitochondrial function in vivo and in single cells with subcellular resolution using multiphoton NADH autofluorescence.
        J Physiol. 2019; 597: 5411-5428
        • Willingham TB
        • Ajayi PT
        • Glancy B.
        Subcellular specialization of mitochondrial form and function in skeletal muscle cells.
        Front Cell Dev Biol. 2021; 9757305
        • Glancy B
        • Kim Y
        • Katti P
        • Willingham TB.
        The functional impact of mitochondrial structure across subcellular scales.
        Front Physiol. 2020; 11
        • Rice CL
        • Vollmer TL
        • Bigland-Ritchie B.
        Neuromuscular responses of patients with multiple sclerosis.
        Muscle Nerve. 1992; 15: 1123-1132
        • Ingram DA
        • Thompson AJ
        • Swash M.
        Central motor conduction in multiple sclerosis: evaluation of abnormalities revealed by transcutaneous magnetic stimulation of the brain.
        J Neurol Neurosurg Psychiatry. 1988; 51: 487-494
        • Armstrong LE
        • Winant DM
        • Swasey PR
        • Seidle ME
        • Carter AL
        • Gehlsen G.
        Using isokinetic dynamometry to test ambulatory patients with multiple sclerosis.
        Phys Ther. 1983; 63: 1274-1279
        • Ponichtera JA
        • Rodgers MM
        • Glaser RM
        • Mathews TA
        • Camaione DN.
        Concentric and eccentric isokinetic lower extremity strength in persons with multiple sclerosis.
        J Orthop Sports Phys Ther. 1992; 16: 114-122
        • Jorgensen M
        • Dalgas U
        • Wens I
        • Hvid LG.
        Muscle strength and power in persons with multiple sclerosis—a systematic review and meta-analysis.
        J Neurol Sci. 2017; 376: 225-241
        • Chung LH
        • Remelius JG
        • van Emmerik RE
        • Kent-Braun JA.
        Leg power asymmetry and postural control in women with multiple sclerosis.
        Med Sci Sports Exerc. 2008; 40: 1717-1724
        • Davies B
        • Arpin D
        • Volkman K
        • et al.
        Neurorehabilitation strategies focusing on ankle control improve mobility and posture in persons with multiple sclerosis.
        J Neurol Phys Ther. 2015; 39: 225-232
        • Wagner JM
        • Kremer TR
        • van Dillen LR
        • Naismith RT.
        Plantarflexor weakness negatively impacts walking in persons with multiple sclerosis more than plantarflexor spasticity.
        Arch Phys Med Rehabil. 2014; 95: 1358-1365
        • Carroll CC
        • Gallagher PM
        • Seidle ME
        • Trappe SW.
        Skeletal muscle characteristics of people with multiple sclerosis.
        Arch Phys Med Rehabil. 2005; 86: 224-229
        • Schwid SR
        • Thornton CA
        • Pandya S
        • et al.
        Quantitative assessment of motor fatigue and strength in MS.
        Neurology. 1999; 53: 743-750
        • Arpin DJ
        • Davies BL
        • Kurz MJ.
        Multiple sclerosis influences the precision of the ankle plantarflexon muscular force production.
        Gait Posture. 2016; 45: 170-174
        • Lambert CP
        • Archer RL
        • Evans WJ.
        Muscle strength and fatigue during isokinetic exercise in individuals with multiple sclerosis.
        Med Sci Sports Exerc. 2001; 33: 1613-1619
        • Chen CC
        • Kasven N
        • Karpatkin HI
        • Sylvester A.
        Hand strength and perceived manual ability among patients with multiple sclerosis.
        Arch Phys Med Rehabil. 2007; 88: 794-797
        • Guclu-Gunduz A
        • Citaker S
        • Nazliel B
        • Irkec C.
        Upper extremity function and its relation with hand sensation and upper extremity strength in patients with multiple sclerosis.
        NeuroRehabilitation. 2012; 30: 369-374
        • Scott SM
        • Hughes AR
        • Galloway SD
        • Hunter AM.
        Surface EMG characteristics of people with multiple sclerosis during static contractions of the knee extensors.
        Clin Physiol Funct Imaging. 2011; 31: 11-17
        • Gaemelke T
        • Riemenschneider M
        • Dalgas U
        • et al.
        Comparison between isometric and concentric motor fatigability in persons with multiple sclerosis and healthy controls—exploring central and peripheral contributions of motor fatigability.
        Neurorehabil Neural Repair. 2021; 35: 644-653
        • Sartori R
        • Romanello V
        • Sandri M.
        Mechanisms of muscle atrophy and hypertrophy: implications in health and disease.
        Nat Commun. 2021; 12: 330
        • Castro MJ
        • Apple DF
        • Staron RS
        • Campos GER
        • Dudley GA.
        Influence of complete spinal cord injury on skeletal muscle within 6 mo of injury.
        J Appl Physiol (1985). 1999; 86: 350-358
        • Buller AJ
        • Eccles JC
        • Eccles RM.
        Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses.
        J Physiol. 1960; 150: 417-439
        • Krieger DA
        • Tate CA
        • McMillin-Wood J
        • Booth FW.
        Populations of rat skeletal muscle mitochondria after exercise and immobilization.
        J Appl Physiol Respir Environ Exerc Physiol. 1980; 48: 23-28
        • Kent-Braun JA
        • Sharma KR
        • Miller RG
        • Weiner MW.
        Postexercise phosphocreatine resynthesis is slowed in multiple sclerosis.
        Muscle Nerve. 1994; 17: 835-841
        • Kent-Braun JA
        • Sharma KR
        • Weiner MW
        • Miller RG.
        Effects of exercise on muscle activation and metabolism in multiple sclerosis.
        Muscle Nerve. 1994; 17: 1162-1169
        • Kumleh HH
        • Riazi GH
        • Houshmand M
        • Sanati MH
        • Gharagozli K
        • Shafa M.
        Complex I deficiency in Persian multiple sclerosis patients.
        J Neurol Sci. 2006; 243: 65-69
        • Harp MA
        • McCully KK
        • Moldavskiy M
        • Backus D.
        Skeletal muscle mitochondrial capacity in people with multiple sclerosis.
        Mult Scler J. 2016; 2: 1-7
        • Sharma KR
        • Kent-Braun J
        • Mynhier MA
        • Weiner MW
        • Miller RG.
        Evidence of an abnormal intramuscular component of fatigue in multiple sclerosis.
        Muscle Nerve. 1995; 18: 1403-1411
        • Grassi B.
        Oxygen uptake kinetics: why are they so slow? And what do they tell us?.
        J Physiol Pharmacol. 2006; 57: 53-65
        • Clanton TL
        • Hogan MC
        • Gladden LB.
        Regulation of cellular gas exchange, oxygen sensing, and metabolic control.
        Compr Physiol. 2013; 3: 1135-1190
        • Senaratne MP
        • Carroll D
        • Warren KG
        • Kappagoda T.
        Evidence for cardiovascular autonomic nerve dysfunction in multiple sclerosis.
        J Neurol Neurosurg Psychiatry. 1984; 47: 947-952
        • Thomaides TN
        • Zoukos Y
        • Chaudhuri KR
        • Mathias C.J.
        Physiological assessment of aspects of autonomic function in patients with secondary progressive multiple sclerosis.
        J Neurol. 1993; 240: 139-143
        • Pepin EB
        • Hicks RW
        • Spencer MK
        • Zv Tran
        • Jackson CG.
        Pressor response to isometric exercise in patients with multiple sclerosis.
        Med Sci Sports Exerc. 1996; 28: 656-660
        • Av Ng
        • Dao HT
        • Miller RG
        • Gelinas DF
        • Kent-Braun JA.
        Blunted pressor and intramuscular metabolic responses to voluntary isometric exercise in multiple sclerosis.
        J Appl Physiol (1985). 2000; 88: 871-880
        • Keller DM
        • Fadel PJ
        • Harnsberger MA
        • Remington GM
        • Frohman EM
        • Davis SL.
        Reduced spontaneous sympathetic nerve activity in multiple sclerosis patients.
        J Neurol Sci. 2014; 344: 210-214
        • Huang M
        • Jay O
        • Davis SL.
        Autonomic dysfunction in multiple sclerosis: implications for exercise.
        Auton Neurosci. 2015; 188: 82-85
        • Ranadive SM
        • Yan H
        • Weikert M
        • et al.
        Vascular dysfunction and physical activity in multiple sclerosis.
        Med Sci Sports Exerc. 2012; 44: 238-243
        • Marrie RA
        • Rudick R
        • Horwitz R
        • et al.
        Vascular comorbidity is associated with more rapid disability progression in multiple sclerosis.
        Neurology. 2010; 74: 1041-1047
        • Ruiz-Arguelles A
        • Mendez-Huerta MA
        • Lozano CD
        • Ruiz-Arguelles GJ.
        Metabolomic profile of insulin resistance in patients with multiple sclerosis is associated to the severity of the disease.
        Mult Scler Relat Disord. 2018; 25: 316-321
        • Radikova Z
        • Penesova A
        • Vlcek M
        • et al.
        LDL and HDL lipoprotein subfractions in multiple sclerosis patients with decreased insulin sensitivity.
        Endocr Regul. 2018; 52: 139-145
        • Wens I
        • Dalgas U
        • Deckx N
        • Cools N
        • Eijnde BO.
        Does multiple sclerosis affect glucose tolerance?.
        Mult Scler. 2014; 20: 1273-1276
        • Oliveira SR
        • Simão ANC
        • Kallaur AP
        • et al.
        Disability in patients with multiple sclerosis: influence of insulin resistance, adiposity, and oxidative stress.
        Nutrition. 2014; 30: 268-273
        • Weinstock-Guttman B
        • Zivadinov R
        • Mahfooz N
        • et al.
        Lipid profiles are associated with lesion formation over 24 months in interferon-beta treated patients following the first demyelinating event.
        J Neurol Neurosurg Psychiatry. 2013; 84: 1186-1191
        • Sternberg Z
        • Leung C
        • Sternberg D
        • et al.
        The prevalence of the classical and non-classical cardiovascular risk factors in multiple sclerosis patients.
        CNS Neurol Disord Drug Targets. 2013; 12: 104-111
        • Marrie RA
        • Patel R
        • Figley CR
        • et al.
        Higher Framingham Risk Scores are associated with greater loss of brain volume over time in multiple sclerosis.
        Mult Scler Relat Disord. 2021; 54103088
        • Omerzu T
        • Magdič J
        • Hojs R
        • Potočnik U
        • Gorenjak M
        • Fabjan TH.
        Subclinical atherosclerosis in patients with relapsing-remitting multiple sclerosis.
        Wien Klin Wochenschr. 2021; ([Epub ahead of print])
        • Geraldes R
        • Esiri MM
        • Perera R
        • et al.
        Vascular disease and multiple sclerosis: a post-mortem study exploring their relationships.
        Brain. 2020; 143: 2998-3012
        • Bethoux FA
        • Palfy DM
        • Plow MA.
        Correlates of the timed 25 foot walk in a multiple sclerosis outpatient rehabilitation clinic.
        Int J Rehabil Res. 2016; 39: 134-139
        • Thoumie P
        • Lamotte D
        • Cantalloube S
        • Faucher M
        • Amarenco G.
        Motor determinants of gait in 100 ambulatory patients with multiple sclerosis.
        Mult Scler. 2005; 11: 485-491
        • Wetzel JL
        • Fry DK
        • Pfalzer LA.
        Six-minute walk test for persons with mild or moderate disability from multiple sclerosis: performance and explanatory factors.
        Physiother Can. 2011; 63: 166-180
        • Romberg A
        • Virtanen A
        • Aunola S
        • Karppi SL
        • Karanko H
        • Ruutiainen J.
        Exercise capacity, disability and leisure physical activity of subjects with multiple sclerosis.
        Mult Scler. 2004; 10: 212-218
        • Taul-Madsen L
        • Riemenschneider M
        • Jørgensen MLK
        • Dalgas U
        • Hvid LG.
        Identification of disability status in persons with multiple sclerosis by lower limb neuromuscular function—emphasis on rate of force development.
        Mult Scler Relat Disord. 2022; 67104082
        • Broekmans T
        • Gijbels D
        • Eijnde BO
        • et al.
        The relationship between upper leg muscle strength and walking capacity in persons with multiple sclerosis.
        Mult Scler. 2013; 19: 112-119
        • Kalron A
        • Achiron A
        • Dvir Z.
        Muscular and gait abnormalities in persons with early onset multiple sclerosis.
        J Neurol Phys Ther. 2011; 35: 164-169
        • Langeskov-Christensen M
        • Heine M
        • Kwakkel G
        • Dalgas U.
        Aerobic capacity in persons with multiple sclerosis: a systematic review and meta-analysis.
        Sports Med. 2015; 45: 905-923
        • Drebinger D
        • Rasche L
        • Kroneberg D
        • et al.
        Association between fatigue and motor exertion in patients with multiple sclerosis—a prospective study.
        Front Neurol. 2020; 11: 208
        • Huisinga JM
        • Filipi ML
        • Schmid KK
        • Stergiou N.
        Is there a relationship between fatigue questionnaires and gait mechanics in persons with multiple sclerosis?.
        Arch Phys Med Rehabil. 2011; 92: 1594-1601
        • Kos D
        • Kerckhofs E
        • Nagels G
        • D'hooghe MB
        • Ilsbroukx S
        Review article: origin of fatigue in multiple sclerosis: review of the literature.
        Neurorehabil Neural Repair. 2008; 22: 91-100
        • Kooshiar H
        • Moshtagh M
        • Sardar MA
        • Foroughipour M
        • Shakeri MT
        • Vahdatinia B.
        Fatigue and quality of life of women with multiple sclerosis: a randomized controlled clinical trial.
        J Sports Med Phys Fitness. 2015; 55: 668-674
        • Zijdewind I
        • Prak RF
        • Wolkorte R.
        Fatigue and fatigability in persons with multiple sclerosis.
        Exerc Sport Sci Rev. 2016; 44: 123-128
        • Loy BD
        • Taylor RL
        • Fling BW
        • Horak FB.
        Relationship between perceived fatigue and performance fatigability in people with multiple sclerosis: a systematic review and meta-analysis.
        J Psychosom Res. 2017; 100: 1-7
        • Téllez N
        • Río J
        • Tintoré M
        • Nos C
        • Galán I
        • Montalban X.
        Fatigue in multiple sclerosis persists over time: a longitudinal study.
        J Neurol. 2006; 253: 1466-1470
        • Wolkorte R
        • Heersema DJ
        • Zijdewind I.
        Muscle fatigability during a sustained index finger abduction and depression scores are associated with perceived fatigue in patients with relapsing-remitting multiple sclerosis.
        Neurorehabil Neural Repair. 2015; 29: 796-802
        • Steens A
        • de Vries A
        • Hemmen J
        • et al.
        Fatigue perceived by multiple sclerosis patients is associated with muscle fatigue.
        Neurorehabil Neural Repair. 2012; 26: 48-57
        • Wolkorte R
        • Heersema DJ
        • Zijdewind I.
        Reduced dual-task performance in MS patients is further decreased by muscle fatigue.
        Neurorehabil Neural Repair. 2015; 29: 424-435
        • DePauw EM
        • Rouhani M
        • Flanagan AM
        • Av Ng
        Forearm muscle mitochondrial capacity and resting oxygen uptake: relationship to symptomatic fatigue in persons with multiple sclerosis.
        Mult Scler J Exp Transl Clin. 2021; 720552173211028875
        • Sheean GL
        • Murray NM
        • Rothwell JC
        • Miller DH
        • Thompson AJ.
        An electrophysiological study of the mechanism of fatigue in multiple sclerosis.
        Brain. 1997; 120: 299-315
        • Andreasen AK
        • Jakobsen J
        • Petersen T
        • Andersen H.
        Fatigued patients with multiple sclerosis have impaired central muscle activation.
        Mult Scler. 2009; 15: 818-827
        • Thickbroom GW
        • Sacco P
        • Faulkner DL
        • Kermode AG
        • Mastaglia FL.
        Enhanced corticomotor excitability with dynamic fatiguing exercise of the lower limb in multiple sclerosis.
        J Neurol. 2008; 255: 1001-1005
        • Av Ng
        • Kent-Braun JA.
        Quantitation of lower physical activity in persons with multiple sclerosis.
        Med Sci Sports Exerc. 1997; 29: 517-523
        • Klaren RE
        • Motl RW
        • Dlugonski D
        • Sandroff BM
        • Pilutti LA.
        Objectively quantified physical activity in persons with multiple sclerosis.
        Arch Phys Med Rehabil. 2013; 94: 2342-2348
        • Bollaert RE
        • Poe K
        • Hubbard EA
        • et al.
        Associations of functional connectivity and walking performance in multiple sclerosis.
        Neuropsychologia. 2018; 117: 8-12
        • Rooney S
        • Riemenschneider M
        • Dalgas U
        • et al.
        Physical activity is associated with neuromuscular and physical function in patients with multiple sclerosis independent of disease severity.
        Disabil Rehabil. 2021; 43: 632-639
        • Bosutti A
        • Mulder E
        • Zange J
        • Bühlmeier J
        • Ganse B
        • Degens H.
        Effects of 21 days of bed rest and whey protein supplementation on plantar flexor muscle fatigue resistance during repeated shortening contractions.
        Eur J Appl Physiol. 2020; 120: 969-983
        • Wall BT
        • Dirks ML
        • Snijders T
        • Senden JMG
        • Dolmans J
        • van Loon LJC.
        Substantial skeletal muscle loss occurs during only 5 days of disuse.
        Acta Physiol (Oxf). 2014; 210: 600-611
        • Mv Narici
        • de Boer MD.
        Disuse of the musculo-skeletal system in space and on earth.
        Eur J Appl Physiol. 2011; 111: 403-420
        • Hvid LG
        • Aagaard P
        • Ørtenblad N
        • Kjaer M
        • Suetta C.
        Plasticity in central neural drive with short-term disuse and recovery—effects on muscle strength and influence of aging.
        Exp Gerontol. 2018; 106: 145-153
        • Stremel RW
        • Convertino VA
        • Bernauer EM
        • Greenleaf JE.
        Cardiorespiratory deconditioning with static and dynamic leg exercise during bed rest.
        J Appl Physiol. 1976; 41: 905-909
        • Ried-Larsen M
        • Aarts HM
        • Joyner MJ.
        Effects of strict prolonged bed rest on cardiorespiratory fitness: systematic review and meta-analysis.
        J Appl Physiol. 2017; 123: 790-799
        • Motl RW
        • McAuley E
        • Sandroff BM
        • Hubbard EA.
        Descriptive epidemiology of physical activity rates in multiple sclerosis.
        Acta Neurol Scand. 2015; 131: 422-425
        • Farup J
        • Dalgas U
        • Keytsman C
        • Eijnde BO
        • Wens I.
        High intensity training may reverse the fiber type specific decline in myogenic stem cells in multiple sclerosis patients.
        Front Physiol. 2016; 7: 193
        • Backus D.
        Increasing physical activity and participation in people with multiple sclerosis: a review.
        Arch Phys Med Rehabil. 2016; 97: S210-S217
        • Rae-Grant A
        • Day GS
        • Marrie RA
        • et al.
        Comprehensive systematic review summary: disease-modifying therapies for adults with multiple sclerosis: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology.
        Neurology. 2018; 90: 789-800
        • Moss BP
        • Rensel MR
        • Hersh CM.
        Wellness and the role of comorbidities in multiple sclerosis.
        Neurotherapeutics. 2017; 14: 999-1017
        • Motl RW
        • Sandroff BM
        • Kwakkel G
        • et al.
        Exercise in patients with multiple sclerosis.
        Lancet Neurol. 2017; 16: 848-856
        • Sandroff BM
        • Motl RW
        • Scudder MR
        • DeLuca J.
        Systematic, evidence-based review of exercise, physical activity, and physical fitness effects on cognition in persons with multiple sclerosis.
        Neuropsychol Rev. 2016; 26: 271-294
        • Motl RW
        • Sandroff BM.
        Benefits of exercise training in multiple sclerosis.
        Curr Neurol Neurosci Rep. 2015; 15: 62
        • Andreu-Caravaca L
        • Ramos-Campo DJ
        • Chung LH
        • Rubio-Arias JA.
        Dosage and effectiveness of aerobic training on cardiorespiratory fitness, functional capacity, balance, and fatigue in people with multiple sclerosis: a systematic review and meta-analysis.
        Arch Phys Med Rehabil. 2021; 102: 1826-1839
        • Cruickshank TM
        • Reyes AR
        • Ziman MR.
        A systematic review and meta-analysis of strength training in individuals with multiple sclerosis or Parkinson disease.
        Medicine (Baltimore). 2015; 94: e411
        • Edwards T
        • Pilutti LA.
        The effect of exercise training in adults with multiple sclerosis with severe mobility disability: a systematic review and future research directions.
        Mult Scler Relat Disord. 2017; 16: 31-39
        • Razazian N
        • Kazeminia M
        • Moayedi H
        • et al.
        The impact of physical exercise on the fatigue symptoms in patients with multiple sclerosis: a systematic review and meta-analysis.
        BMC Neurol. 2020; 20: 93
        • Taul-Madsen L
        • Connolly L
        • Dennett R
        • Freeman J
        • Dalgas U
        • Hvid LG.
        Is aerobic or resistance training the most effective exercise modality for improving lower extremity physical function and perceived fatigue in people with multiple sclerosis? A systematic review and meta-analysis.
        Arch Phys Med Rehabil. 2021; 102: 2032-2048
        • Dalgas U
        • Langeskov-Christensen M
        • Stenager E
        • Riemenschneider M
        • Hvid LG.
        Exercise as medicine in multiple sclerosis-time for a paradigm shift: preventive, symptomatic, and disease-modifying aspects and perspectives.
        Curr Neurol Neurosci Rep. 2019; 19: 88
        • Dalgas U
        • Stenager E
        • Jakobsen J
        • Petersen T
        • Overgaard K
        • Ingemann-Hansen T.
        Muscle fiber size increases following resistance training in multiple sclerosis.
        Mult Scler. 2010; 16: 1367-1376
        • Plotkin DL
        • Roberts MD
        • Haun CT
        • Schoenfeld BJ.
        Muscle fiber type transitions with exercise training: shifting perspectives.
        Sports (Basel). 2021; 9: 127
        • Dalgas U
        • Stenager E
        • Lund C
        • et al.
        Neural drive increases following resistance training in patients with multiple sclerosis.
        J Neurol. 2013; 260: 1822-1832
        • Fimland MS
        • Helgerud J
        • Gruber M
        • Leivseth G
        • Hoff J.
        Enhanced neural drive after maximal strength training in multiple sclerosis patients.
        Eur J Appl Physiol. 2010; 110: 435-443
        • Tavazzi E
        • Cazzoli M
        • Pirastru A
        • et al.
        Neuroplasticity and motor rehabilitation in multiple sclerosis: a systematic review on MRI markers of functional and structural changes.
        Front Neurosci. 2021; 15707675
        • Tavazzi E
        • Bergsland N
        • Cattaneo D
        • et al.
        Effects of motor rehabilitation on mobility and brain plasticity in multiple sclerosis: a structural and functional MRI study.
        J Neurol. 2018; 265: 1393-1401
        • Kjolhede T
        • Siemonsen S
        • Wenzel D
        • et al.
        Can resistance training impact MRI outcomes in relapsing-remitting multiple sclerosis?.
        Mult Scler. 2018; 24: 1356-1365
        • Prosperini L
        • Piattella MC
        • Gianni C
        • Pantano P.
        Functional and structural brain plasticity enhanced by motor and cognitive rehabilitation in multiple sclerosis.
        Neural Plast. 2015; 2015481574
        • Bonzano L
        • Tacchino A
        • Brichetto G
        • et al.
        Upper limb motor rehabilitation impacts white matter microstructure in multiple sclerosis.
        Neuroimage. 2014; 90: 107-116
        • Prakash RS
        • Patterson B
        • Janssen A
        • Abduljalil A
        • Boster A.
        Physical activity associated with increased resting-state functional connectivity in multiple sclerosis.
        J Int Neuropsychol Soc. 2011; 17: 986-997
        • Kim Y
        • Lai B
        • Mehta T
        • et al.
        Exercise training guidelines for multiple sclerosis, stroke, and Parkinson disease: rapid review and synthesis.
        Am J Phys Med Rehabil. 2019; 98: 613-621
        • Pilutti LA
        • Motl RW.
        Functional electrical stimulation cycling exercise for people with multiple sclerosis.
        Curr Treat Options Neurol. 2019; 21: 54
        • Doucet BM
        • Lam A
        • Griffin L.
        Neuromuscular electrical stimulation for skeletal muscle function.
        Yale J Biol Med. 2012; 85: 201
        • Rosenfalck A
        • Andreassen S.
        Impaired regulation of force and firing pattern of single motor units in patients with spasticity.
        J Neurol Neurosurg Psychiatry. 1980; 43: 907-916
        • Mamoei S
        • Hvid LG
        • Jensen HB
        • Zijdewind I
        • Stenager E
        • Dalgas U.
        Neurophysiological impairments in multiple sclerosis-Central and peripheral motor pathways.
        Acta Neurol Scand. 2020; 142: 401-417
        • Wolkorte R
        • Heersema DJ
        • Zijdewind I.
        Reduced voluntary activation during brief and sustained contractions of a hand muscle in secondary-progressive multiple sclerosis patients.
        Neurorehabil Neural Repair. 2016; 30: 307-316
        • Ratchford JN
        • Shore W
        • Hammond ER
        • et al.
        A pilot study of functional electrical stimulation cycling in progressive multiple sclerosis.
        NeuroRehabilitation. 2010; 27: 121-128
        • Szecsi J
        • Schlick C
        • Schiller M
        • Pöllmann W
        • Koenig N
        • Straube A.
        Functional electrical stimulation-assisted cycling of patients with multiple sclerosis: biomechanical and functional outcome–a pilot study.
        J Rehabil Med. 2009; 41: 674-680
        • Pilutti LA
        • Edwards T
        • Motl RW
        • Sebastião E.
        Functional electrical stimulation cycling exercise in people with multiple sclerosis: secondary effects on cognition, symptoms, and quality of life.
        Int J MS Care. 2019; 21: 258-264
        • Farrell JW
        • Edwards T
        • Motl RW
        • Pilutti LA.
        Effect of functional electrical stimulation cycling exercise on lower limb strength asymmetry in persons with multiple sclerosis.
        Int J MS Care. 2022; 24: 25-28
        • Scally JB
        • Baker JS
        • Rankin J
        • Renfrew L
        • Sculthorpe N.
        Evaluating functional electrical stimulation (FES) cycling on cardiovascular, musculoskeletal and functional outcomes in adults with multiple sclerosis and mobility impairment: a systematic review.
        Mult Scler Relat Disord. 2020; 37101485
        • Edwards T
        • Motl RW
        • Sebastião E
        • Pilutti LA.
        Pilot randomized controlled trial of functional electrical stimulation cycling exercise in people with multiple sclerosis with mobility disability.
        Mult Scler Relat Disord. 2018; 26: 103-111
        • Davis LA
        • Alenazy MS
        • Almuklass AM
        • et al.
        Force control during submaximal isometric contractions is associated with walking performance in persons with multiple sclerosis.
        J Neurophysiol. 2020; 123: 2191-2200
        • Almuklass AM
        • Davis L
        • Hamilton LD
        • Vieira TM
        • Botter A
        • Enoka RM.
        Control of movement: motor unit discharge characteristics and walking performance of individuals with multiple sclerosis.
        J Neurophysiol. 2018; 119: 1273
        • Hansen D
        • Wens I
        • Kosten L
        • Verboven K
        • Eijnde BO.
        Slowed exercise-onset Vo2 kinetics during submaximal endurance exercise in subjects with multiple sclerosis.
        Neurorehabil Neural Repair. 2013; 27: 87-95
        • Thyfault JP
        • Bergouignan A.
        Exercise and metabolic health: beyond skeletal muscle.
        Diabetologia. 2020; 63: 1464-1474
        • Wens I
        • Hansen D
        • Verboven K
        • et al.
        Impact of 24 weeks of resistance and endurance exercise on glucose tolerance in persons with multiple sclerosis.
        Am J Phys Med Rehabil. 2015; 94: 838-847
        • Hauer L
        • Perneczky J
        • Sellner J.
        A global view of comorbidity in multiple sclerosis: a systematic review with a focus on regional differences, methodology, and clinical implications.
        J Neurol. 2021; 268: 4066-4077
        • Rapp D
        • Michels S
        • Schöpe J
        • Schwingshackl L
        • Tumani H
        • Senel M.
        Associations between multiple sclerosis and incidence of heart diseases: systematic review and meta-analysis of observational studies.
        Mult Scler Relat Disord. 2021; 56103279
        • Christiansen CF
        • Christensen S
        • Farkas DK
        • Miret M
        • Sørensen HT
        • Pedersen L.
        Risk of arterial cardiovascular diseases in patients with multiple sclerosis: a population-based cohort study.
        Neuroepidemiology. 2010; 35: 267-274
        • Keytsman C
        • Eijnde BO
        • Hansen D
        • Verboven K
        • Wens I.
        Elevated cardiovascular risk factors in multiple sclerosis.
        Mult Scler Relat Disord. 2017; 17: 220-223
        • Redelings MD
        • McCoy L
        • Sorvillo F.
        Multiple sclerosis mortality and patterns of comorbidity in the United States from 1990 to 2001.
        Neuroepidemiology. 2006; 26: 102-107
        • Sjoberg KA
        • Frøsig C
        • Kjøbsted R
        • et al.
        Exercise increases human skeletal muscle insulin sensitivity via coordinated increases in microvascular perfusion and molecular signaling.
        Diabetes. 2017; 66: 1501-1510
        • Padilla J
        • Olver TD
        • Thyfault JP
        • Fadel PJ.
        Role of habitual physical activity in modulating vascular actions of insulin.
        Exp Physiol. 2015; 100: 759-771
        • Olver TD
        • Ferguson BS
        • Laughlin MH.
        Molecular mechanisms for exercise training-induced changes in vascular structure and function: skeletal muscle, cardiac muscle, and the brain.
        Prog Mol Biol Transl Sci. 2015; 135: 227-257
        • Erickson ML
        • Little JP
        • Gay JL
        • McCully KK
        • Jenkins NT.
        Postmeal exercise blunts postprandial glucose excursions in people on metformin monotherapy.
        J Appl Physiol (1985). 2017; 123: 444-450
        • Wolff CA
        • Esser KA.
        Exercise timing and circadian rhythms.
        Curr Opin Physiol. 2019; 10: 64-69
        • Powell DJH
        • Liossi C
        • Schlotz W
        • Moss-Morris R.
        Tracking daily fatigue fluctuations in multiple sclerosis: ecological momentary assessment provides unique insights.
        J Behav Med. 2017; 40: 772-783
        • Wens I
        • Hansen D.
        Muscle strength, but not muscle oxidative capacity, varies between the morning and the afternoon in patients with multiple sclerosis: a pilot study.
        Am J Phys Med Rehabil. 2017; 96: 828-830
        • Streckis V
        • Skurvydas A
        • Mamkus G.
        Effect of the time of day on central and peripheral fatigue during 2-min maximal voluntary contractions in persons with multiple sclerosis: gender differences.
        J Electromyogr Kinesiol. 2014; 24: 601-606