Advertisement

The Gait Disorientation Test: A New Method for Screening Adults With Dizziness and Imbalance

Published:December 15, 2020DOI:https://doi.org/10.1016/j.apmr.2020.11.010

      Highlights

      • Persons with vestibular disorders have impaired spatial navigation.
      • The gait disorientation test (GDT) is a reliable and valid screening test in adults.
      • Results for the GDT discriminate healthy from vestibular-impaired adults.

      Abstract

      Objective

      To develop and evaluate a new method for identifying gait disorientation due to vestibular dysfunction.

      Design

      The gait disorientation test (GDT) involves a timed comparison of the ability to walk 6.096 m with eyes open versus eyes closed. In this prospective study, participants were grouped based on vestibular function. All participants completed a clinical examination, self-report- and performance-based measures relevant to vestibular rehabilitation, and the tasks for the GDT. Vestibular-impaired participants underwent the criterion standard, videonystagmography and/or rotational chair testing.

      Setting

      Ambulatory clinic, tertiary referral center.

      Participants

      Participants (N=40) (20 vestibular-impaired, 30 women, 49.9±16.1years old) were enrolled from a convenience/referral sample of 52 adults.

      Main Outcome and Measure(s)

      We determined test-retest reliability using the intraclass correlation coefficient model 3,1; calculated the minimal detectable change (MDC); examined concurrent validity through Spearman correlation coefficients; assessed criterion validity with the area under the curve (AUC) from receiver operator characteristic analysis; and computed the sensitivity, specificity, diagnostic odds ratio (DOR), likelihood ratios for positive (LR+) and negative (LR−) tests, and posttest probabilities of a diagnosis of vestibulopathy. The 95% confidence interval demonstrates measurement uncertainty.

      Results

      Test-retest reliability was 0.887 (0.815, 0.932). The MDC was 3.7 seconds. Correlations with other measures ranged from 0.59 (0.34, 0.76) to −0.85 (−0.92, −0.74). The AUC was 0.910 (0.822, 0.998), using a threshold of 4.5 seconds. The sensitivity and specificity were 0.75 (0.51, 0.91) and 0.95 (0.75, 1), respectively. The DOR=57 (6, 541.47), LR+ =15 (2.18, 103.0), and LR− =0.26 (0.12, 0.9). Positive posttest probabilities were 89%-94%.

      Conclusions and Relevance

      The GDT has good reliability, excellent discriminative ability, strong convergent validity, and promising clinical utility.

      Keywords

      List of abbreviations:

      95% CI (95% confidence interval), ABCS (Activities-specific Balance Confidence Scale), AUC (area under the curve), COMP (composite score), DHI (Dizziness Handicap Inventory), DOR (diagnostic odds ratio), DVAT (dynamic visual acuity test), FGA (Functional Gait Assessment), FGA1 (Functional Gait Assessment, item 1), FGA8 (Functional Gait Assessment, item 8), FTSTST (Five-times Sit-to-stand Test), GDT (Gait Disorientation Test), hDVAT (horizontal dynamic visual acuity test), hHIT (horizontal head impulse test), HSN (head shaking nystagmus), LR (likelihood ratio), LR+ (likelihood ratio for a positive test), LR− (likelihood ratio for a negative test), MDC (minimal detectable change), RC (rotational chair), ROC (receiver operator characteristic), SOM (somatosensory score), SOT (Sensory Organization Test), vDVAT (vertical dynamic visual acuity test), VNG (videonystagmography)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Archives of Physical Medicine and Rehabilitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ward B.K.
        • Agrawal Y.
        • Hoffman H.J.
        • Carey J.P.
        • Della Santina C.C.
        Prevalence and impact of bilateral vestibular hypofunction: results from the 2008 US National Health Interview Survey.
        JAMA Otolaryngol Head Neck Surg. 2013; 139: 803-810
        • Blackwell D.L.
        • Lucas J.W.
        • Clarke T.C.
        Summary health statistics for U.S. adults: national health interview survey, 2012.
        Vital Health Stat 10. 2014; : 1-161
        • Agrawal Y.
        • Carey J.P.
        • Della Santina C.C.
        • Schubert M.C.
        • Minor L.B.
        Disorders of balance and vestibular function in US adults: data from the National Health and Nutrition Examination Survey, 2001-2004.
        Arch Intern Med. 2009; 169: 938-944
        • Zwergal A.
        • Rettinger N.
        • Frenzel C.
        • Dieterich M.
        • Brandt T.
        • Strupp M.
        A bucket of static vestibular function.
        Neurology. 2009; 72: 1689-1692
        • Fukuda T.
        The stepping test: two phases of the labyrinthine reflex.
        Acta Otolaryngol. 1959; 50: 95-108
        • National Institute of
        Deafness and Other Communication Disorders. 2017-2021 strategic plan.
        National Institutes of Health, 2017 (Available at: https://www.nidcd.nih.gov/about/strategic-plan/2017-2021-nidcd-strategic-plan. Accessed June 30, 2020.)
        • Cohen H.S.
        A review on screening tests for vestibular disorders.
        J Neurophysiol. 2019; 122: 81-92
        • Longridge N.S.
        • Mallinson A.I.
        The dynamic illegible E-test: a technique for assessing the vestibulo-ocular reflex.
        Acta Otolaryngol. 1987; 103: 273-279
        • Brandt T.
        • Schautzer F.
        • Hamilton D.A.
        • et al.
        Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans.
        Brain. 2005; 128: 2732-2741
        • Black F.O.
        • Wall 3rd, C.
        • Nashner L.M.
        Effects of visual and support surface orientation references upon postural control in vestibular deficient subjects.
        Acta Otolaryngol. 1983; 95: 199-201
        • Tucker C.A.
        • Ramirez J.
        • Krebs D.E.
        • Riley P.O.
        Center of gravity dynamic stability in normal and vestibulopathic gait.
        Gait Posture. 1998; 8: 117-123
        • Halmagyi G.M.
        • Curthoys I.S.
        • Cremer P.D.
        • et al.
        The human horizontal vestibulo-ocular reflex in response to high-acceleration stimulation before and after unilateral vestibular neurectomy.
        Exp Brain Res. 1990; 81: 479-490
        • Hain T.C.
        • Fetter M.
        • Zee D.S.
        Head-shaking nystagmus in patients with unilateral peripheral vestibular lesions.
        Am J Otolaryngol. 1987; 8: 36-47
        • Romberg M.H.
        A manual for the nervous diseases of man.
        Syndenham Society, London1853
        • Graybiel A.
        • Fregly A.R.
        A new quantitative ataxia test battery.
        Acta Otolaryngol. 1966; 61: 292-312
        • Berg K.O.
        • Wood-Dauphinee S.L.
        • Williams J.I.
        • Maki B.
        Measuring balance in the elderly: validation of an instrument.
        Can J Public Health. 1992; 83: S7-S11
        • Nashner L.M.
        • Peters J.F.
        Dynamic posturography in the diagnosis and management of dizziness and balance disorders.
        Neurol Clin. 1990; 8: 331-349
        • Podsiadlo D.
        • Richardson S.
        The timed “Up & Go”: a test of basic functional mobility for frail elderly persons.
        J Am Geriatr Soc. 1991; 39: 142-148
        • Shumway-Cook A.
        • Baldwin M.
        • Polissar N.L.
        • Gruber W.
        Predicting the probability for falls in community-dwelling older adults.
        Phys Ther. 1997; 77: 812-819
        • Mulavara A.P.
        • Cohen H.S.
        • Bloomberg J.J.
        Critical features of training that facilitate adaptive generalization of over ground locomotion.
        Gait Posture. 2009; 29: 242-248
        • Harvey S.A.
        • Wood D.J.
        • Feroah T.R.
        Relationship of the head impulse test and head-shake nystagmus in reference to caloric testing.
        Am J Otol. 1997; 18: 207-213
        • Peters B.T.
        • Mulavara A.P.
        • Cohen H.S.
        • Sangi-Haghpeykar H.
        • Bloomberg J.J.
        Dynamic visual acuity testing for screening patients with vestibular impairments.
        J Vestib Res. 2012; 22: 145-151
        • Cohen H.S.
        • Sangi-Haghpeykar H.
        Subjective visual vertical in vestibular disorders measured with the bucket test.
        Acta Otolaryngol. 2012; 132: 850-854
        • Cohen H.S.
        • Kimball K.T.
        Usefulness of some current balance tests for identifying individuals with disequilibrium due to vestibular impairments.
        J Vestib Res. 2008; 18: 295-303
        • Fregly A.R.
        • Graybiel A.
        Labyrinthine defects as shown by ataxia and caloric tests.
        Acta Otolaryngol. 1970; 69: 216-222
        • Longridge N.S.
        • Mallinson A.I.
        Clinical Romberg testing does not detect vestibular disease.
        Otol Neurotol. 2010; 31: 803-806
        • Peruch P.
        • Borel L.
        • Gaunet F.
        • Thinus-Blanc G.
        • Magnan J.
        • Lacour M.
        Spatial performance of unilateral vestibular defective patients in nonvisual versus visual navigation.
        J Vestib Res. 1999; 9: 37-47
        • Cohen H.S.
        Vestibular disorders and impaired path integration along a linear trajectory.
        J Vestib Res. 2000; 10: 7-15
        • Paquet N.
        • Kulkarni K.
        • Fung J.
        • Watt D.
        Spatial navigation after surgical resection of an acoustic neuroma: pilot study.
        J Otolaryngol. 2003; 32: 180-184
        • Schautzer F.
        • Hamilton D.
        • Kalla R.
        • Strupp M.
        • Brandt T.
        Spatial memory deficits in patients with chronic bilateral vestibular failure.
        Ann N Y Acad Sci. 2003; 1004: 316-324
        • Borel L.
        • Harlay F.
        • Lopez C.
        • Magnan J.
        • Chays A.
        • Lacour M.
        Walking performance of vestibular-defective patients before and after unilateral vestibular neurotomy.
        Behav Brain Res. 2004; 150: 191-200
        • Guidetti G.
        • Monzani D.
        • Trebbi M.
        • Rovatti V.
        Impaired navigation skills in patients with psychological distress and chronic peripheral vestibular hypofunction without vertigo.
        Acta Otorhinolaryngol Ital. 2008; 28: 21-25
        • Cohen H.S.
        • Sangi-Haghpeykar H.
        Walking speed and vestibular disorders in a path integration task.
        Gait Posture. 2011; 33: 211-213
        • Arthur J.C.
        • Kortte K.B.
        • Shelhamer M.
        • Schubert M.C.
        Linear path integration deficits in patients with abnormal vestibular afference.
        Seeing Perceiving. 2012; 25: 155-178
        • Kremmyda O.
        • Hufner K.
        • Flanagin V.L.
        • et al.
        Beyond dizziness: virtual navigation, spatial anxiety and hippocampal volume in bilateral vestibulopathy.
        Front Hum Neurosci. 2016; 10: 139
        • Franke L.M.
        • Walker W.C.
        • Cifu D.X.
        • Ochs A.L.
        • Lew H.L.
        Sensorintegrative dysfunction underlying vestibular disorders after traumatic brain injury: a review.
        J Rehabil Res Dev. 2012; 49: 985-994
        • Teel E.
        • Gay M.
        • Johnson B.
        • Slobounov S.
        Determining sensitivity/specificity of virtual reality-based neuropsychological tool for detecting residual abnormalities following sport-related concussion.
        Neuropsychology. 2016; 30: 474-483
        • Beylergil S.B.
        • Ozinga S.
        • Walker M.F.
        • McIntyre C.C.
        • Shaikh A.G.
        Vestibular heading perception in Parkinson’s disease.
        Prog Brain Res. 2019; 249: 307-319
        • Xie Y.
        • Bigelow R.T.
        • Frankenthaler S.F.
        • Studenski S.A.
        • Moffat S.D.
        • Agrawal Y.
        Vestibular loss in older adults is associated with impaired spatial navigation: data from the triangle completion task.
        Front Neurol. 2017; 8: 173
        • Bronstein A.M.
        The visual vertigo syndrome.
        Acta Otolaryngol Suppl. 1995; 520: 45-48
        • Bigelow R.T.
        • Agrawal Y.
        Vestibular involvement in cognition: visuospatial ability, attention, executive function, and memory.
        J Vestib Res. 2015; 25: 73-89
        • Loomis J.M.
        • Klatzky R.L.
        • Golledge R.G.
        • Cicinelli J.G.
        • Pellegrino J.W.
        • Fry P.A.
        Nonvisual navigation by blind and sighted: assessment of path integration ability.
        J Exp Psychol Gen. 1993; 122: 73-91
        • Philbeck J.W.
        • Klatzky R.L.
        • Behrmann M.
        • Loomis J.M.
        • Goodridge J.
        Active control of locomotion facilitates nonvisual navigation.
        J Exp Psychol Hum Percept Perform. 2001; 27: 141-153
        • Peruch P.
        • Borel L.
        • Magnan J.
        • Lacour M.
        Direction and distance deficits in path integration after unilateral vestibular loss depend on task complexity.
        Brain Res Cogn Brain Res. 2005; 25: 862-872
        • Cohen H.S.
        • Kimball K.T.
        Improvements in path integration after vestibular rehabilitation.
        J Vestib Res. 2002; 12: 47-51
        • Glasauer S.
        • Amorim M.A.
        • Vitte E.
        • Berthoz A.
        Goal-directed linear locomotion in normal and labyrinthine-defective subjects.
        Exp Brain Res. 1994; 98: 323-335
        • Glasauer S.
        • Amorim M.A.
        • Viaud-Delmon I.
        • Berthoz A.
        Differential effects of labyrinthine dysfunction on distance and direction during blindfolded walking of a triangular path.
        Exp Brain Res. 2002; 145: 489-497
        • Wrisley D.M.
        • Marchetti G.F.
        • Kuharsky D.K.
        • Whitney S.L.
        Reliability, internal consistency, and validity of data obtained with the functional gait assessment.
        Phys Ther. 2004; 84: 906-918
        • Barber H.O.
        • Stockwell C.W.
        Manual of electronystagmography.
        CW Mosby, St. Louis1980
        • Bohannon R.W.
        • Bubela D.J.
        • Magasi S.R.
        • Wang Y.C.
        • Gershon R.C.
        Sit-to-stand test: performance and determinants across the age-span.
        Isokinet Exerc Sci. 2010; 18: 235-240
        • Feng Y.
        • Schlosser F.J.
        • Sumpio B.E.
        The Semmes Weinstein monofilament examination as a screening tool for diabetic peripheral neuropathy.
        J Vasc Surg. 2009; 50: 675-682, 682.e1
        • Paul S.S.
        • Dibble L.E.
        • Walther R.G.
        • Shelton C.
        • Gurgel R.K.
        • Lester M.E.
        Reduced purposeful head movements during community ambulation following unilateral vestibular loss.
        Neurorehabil Neural Repair. 2018; 32: 309-316
        • World Medical Association
        World Medical Association Declaration of Helsinki ethical principles for medical research involving human subjects.
        J Am Med Assoc. 2013; 310: 2191-2194
        • Powell L.E.
        • Myers A.M.
        The Activities-specific Balance Confidence (ABC) scale.
        J Gerontol A Biol Sci Med Sci. 1995; 50: M28-M34
        • Jacobson G.P.
        • Newman C.W.
        The development of the Dizziness Handicap Inventory.
        Arch Otolaryngol Head Neck Surg. 1990; 116: 424-427
        • Mirka A.
        • Black F.O.
        Clinical application of dynamic posturography for evaluating sensory integration and vestibular dysfunction.
        Neurol Clin. 1990; 8: 351-359
        • Monsell E.M.
        • Furman J.M.
        • Herdman S.J.
        • Konrad H.R.
        • Shepard N.T.
        Computerized dynamic platform posturography.
        Otolaryngol Head Neck Surg. 1997; 117: 394-398
        • Shrout P.
        • Fleiss J.
        Intraclass correlation: uses in assessing rater reliability.
        Psychol Bull. 1979; 86: 420-428
        • Weir J.P.
        Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM.
        J Strength Cond Res. 2005; 19: 231-240
        • DeLong E.R.
        • DeLong D.M.
        • Clarke-Pearson D.L.
        Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach.
        Biometrics. 1988; 44: 837-845
        • Glas A.S.
        • Lijmer J.G.
        • Prins M.H.
        • Bonsel G.J.
        • Bossuyt P.M.
        The diagnostic odds ratio: a single indicator of test performance.
        J Clin Epidemiol. 2003; 56: 1129-1135
        • Kroenke K.
        • Hoffman R.M.
        • Einstadter D.
        How common are various causes of dizziness? A critical review.
        South Med J. 2000; 93 (quiz 8): 160-167
        • Portney L.G.
        • Watkins M.P.
        Foundations of clinical research. 2nd ed.
        Prentice-Hall, New Jersey2000
        • Youdas J.W.
        • Atwood A.L.
        • Harris-Love M.O.
        • Stiller T.L.
        • Egan K.S.
        • Therneau T.M.
        Measurements of temporal aspects of gait obtained with a multimemory stopwatch in persons with gait impairments.
        J Orthop Sports Phys Ther. 2000; 30: 279-286
        • Gould N.F.
        • Holmes M.K.
        • Fantie B.D.
        • et al.
        Performance on a virtual reality spatial memory navigation task in depressed patients.
        Am J Psychiatry. 2007; 164: 516-519
        • Sanders A.E.
        • Holtzer R.
        • Lipton R.B.
        • Hall C.
        • Verghese J.
        Egocentric and exocentric navigation skills in older adults.
        J Gerontol A Biol Sci Med Sci. 2008; 63: 1356-1363
        • Tippett W.J.
        • Lee J.H.
        • Mraz R.
        • et al.
        Convergent validity and sex differences in healthy elderly adults for performance on 3D virtual reality navigation learning and 2D hidden maze tasks.
        Cyberpsychol Behav. 2009; 12: 169-174
        • Schmidheiny A.
        • Swanenburg J.
        • Straumann D.
        • de Bruin E.D.
        • Knols R.H.
        Discriminant validity and test re-test reproducibility of a gait assessment in patients with vestibular dysfunction.
        BMC Ear Nose Throat Disord. 2015; 15: 6
        • Hegarty M.
        • Richardson A.E.
        • Montello D.R.
        • Lovelace K.
        • Subbiah I.
        Development of a self-report measure of environmental spatial ability.
        Intelligence. 2002; 30: 425-448
        • Lawton C.A.
        Gender differences in way-finding strategies: relationship to spatial ability and spatial anxiety.
        Sex Roles. 1994; 30: 765-779
        • Fritz S.
        • Lusardi M.
        White paper: “walking speed: the sixth vital sign.”.
        J Geriatr Phys Ther. 2009; 32: 46-49
        • Middleton A.
        • Fritz S.L.
        • Lusardi M.
        Walking speed: the functional vital sign.
        J Aging Phys Act. 2015; 23: 314-322
        • Martin E.
        • Kim S.
        • Unfried A.
        • et al.
        6th vital sign app: testing validity and reliability for measuring gait speed.
        Gait Posture. 2019; 68: 264-268
        • Tokle G.
        • Morkved S.
        • Brathen G.
        • et al.
        Efficacy of vestibular rehabilitation following acute vestibular neuritis: a randomized controlled trial.
        Otol Neurotol. 2020; 41: 78-85
        • Findlay G.F.
        • Balain B.
        • Trivedi J.M.
        • Jaffray D.C.
        Does walking change the Romberg sign?.
        Eur Spine J. 2009; 18: 1528-1531
        • Perrochon A.
        • Kemoun G.
        The Walking Trail-Making Test is an early detection tool for mild cognitive impairment.
        Clin Interv Aging. 2014; 9: 111-119
        • Israël I.
        • Bronstein A.M.
        • Kanayama R.
        • Faldon M.
        • Gresty M.A.
        Visual and vestibular factors influencing vestibular “navigation.”.
        Exp Brain Res. 1996; 112: 411-419
        • Philbeck J.W.
        • O'Leary S.
        Remembered landmarks enhance the precision of path integration.
        Psicológica. 2005; 26: 7-24
        • Arthur J.C.
        • Philbeck J.W.
        • Chichka D.
        Spatial memory enhances the precision of angular self-motion updating.
        Exp Brain Res. 2007; 183: 557-568
        • Arthur J.C.
        • Philbeck J.W.
        • Chichka D.
        Non-sensory inputs to angular path integration.
        J Vestib Res. 2009; 19: 111-125
        • Arthur J.C.
        • Philbeck J.W.
        • Kleene N.J.
        • Chichka D.
        The role of spatial memory and frames of reference in the precision of angular path integration.
        Acta Psychol. 2012; 141: 112-121
        • Guyatt G.
        • Rennie D.
        • Meade M.O.
        • Cook D.J.
        Users’ guide to the medical literature: essentials of evidence-based clinical practice. 3rd ed.
        McGraw-Hill Education, Chicago2015