Advertisement

Shoulder Pain Is Associated With Rate of Rise and Jerk of the Applied Forces During Wheelchair Propulsion in Individuals With Paraplegic Spinal Cord Injury

Published:November 04, 2020DOI:https://doi.org/10.1016/j.apmr.2020.10.114

      Abstract

      Objective

      To investigate the association between propulsion biomechanics, including variables that describe smoothness of the applied forces, and shoulder pain in individuals with spinal cord injury (SCI).

      Design

      Cross-sectional, observational study.

      Setting

      Non-university research institution.

      Participants

      Community dwelling, wheelchair dependent participants (N=30) with chronic paraplegia between T2 and L1, with and without shoulder pain (age, 48.6±9.3y; 83% men).

      Interventions

      Not applicable.

      Main Outcome Measures

      Rate of rise and jerk of applied forces during wheelchair propulsion. Participants were stratified in groups with low, moderate, and high pain based on their Wheelchair User Shoulder Pain Index score on the day of measurement.

      Results

      A mixed-effect multilevel analysis showed that wheelchair users in the high pain group propelled with a significantly greater rate of rise and jerk, measures that describe smoothness of the applied forces, compared with individuals with less or no pain, when controlling for all covariables.

      Conclusions

      Individuals with severe shoulder pain propelled with less smooth strokes compared to individuals with less or no pain. This supports a possible association between shoulder pain and rate of rise and jerk of the applied forces during wheelchair propulsion.

      Keywords

      List of abbreviations:

      ADL (activities of daily living), FEF (fraction of effective force), HPG (high pain group), IC (initial contact), LPG (low pain group), MPG (moderate pain group), NRS (numeric rating scale), PC-WUSPI (performance-corrected Wheelchair User Shoulder Pain Index), PROP (propulsion), REL (release), ROR (rate of rise), SCI (spinal cord injury), TSI (time since injury), WUSPI (Wheelchair User Shoulder Pain Index)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Archives of Physical Medicine and Rehabilitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gironda R.J.
        • Clark M.E.
        • Neugaard B.
        • Nelson A.
        Upper limb pain in a national sample of veterans with paraplegia.
        J Spinal Cord Med. 2004; 27: 120-127
        • Jensen M.P.
        • Hoffman A.J.
        • Cardenas D.D.
        Chronic pain in individuals with spinal cord injury: a survey and longitudinal study.
        Spinal Cord. 2005; 43: 704-712
        • Turner J.A.
        • Cardenas D.D.
        • Warms C.A.
        • McClellan C.B.
        Chronic pain associated with spinal cord injuries: a community survey.
        Arch Phys Med Rehabil. 2001; 82: 501-509
        • Bossuyt F.M.
        • Arnet U.
        • Brinkhof M.W.G.
        • et al.
        Shoulder pain in the Swiss spinal cord injury community: prevalence and associated factors.
        Disabil Rehabil. 2018; 40: 798-805
        • Störmer S.
        • Gerner H.J.
        • Grüninger W.
        • et al.
        Chronic pain/dysaesthesiae in spinal cord injury patients: results of a multicentre study.
        Spinal Cord. 1997; 35: 446-455
        • Curtis K.A.
        • Roach K.E.
        • Applegate E.B.
        • et al.
        Reliability and validity of the Wheelchair User's Shoulder Pain Index (WUSPI).
        Paraplegia. 1995; 33: 595-601
        • Daylan M.
        • Cardenas D.D.
        • Gerard B.
        Upper extrimity pain after spinal cord injury.
        Spinal Cord. 1999; 37: 191-195
        • Pentland W.E.
        • Twomey L.T.
        Upper limb function in persons with long term paraplegia and implications for independence: part II.
        Paraplegia. 1994; 32: 219-224
        • Curtis K.A.
        • Drysdale G.A.
        • Lanza R.D.
        • Kolber M.
        • Vitolo R.S.
        • West R.
        Shoulder pain in wheelchair users with tetraplegia and paraplegia.
        Arch Phys Med Rehabil. 1999; 80: 453-457
        • Gutierrez D.D.
        • Thompson L.
        • Kemp B.
        • et al.
        The relationship of shoulder pain intensity to quality of life, physical activity, and community participation in persons with paraplegia.
        J Spinal Cord Med. 2007; 30: 251-255
        • Lundqvist C.
        • Siösteen A.
        • Blomstrand C.
        • Lind B.
        • Sullivan M.
        Spinal cord injuries. Clinical, functional, and emotional status.
        Spine (Phila Pa 1976. 1991; 16: 78-83
        • Lund J.P.
        • Donga R.
        • Widmer C.G.
        • Stohler C.S.
        The pain-adaptation model: a discussion of the relationship between chronic musculoskeletal pain and motor activity.
        Can J Physiol Pharmacol. 1991; 69: 683-694
        • Brose S.W.
        • Boninger M.L.
        • Fullerton B.
        • et al.
        Shoulder ultrasound abnormalities, physical examination findings, and pain in manual wheelchair users with spinal cord injury.
        Arch Phys Med Rehabil. 2008; 89: 2086-2093
        • Collinger J.L.
        • Fullerton B.
        • Impink B.G.
        • Koontz A.M.
        • Boninger M.L.
        Validation of grayscale-based quantitative ultrasound in manual wheelchair users: relationship to established clinical measures of shoulder pathology.
        Am J Phys Med Rehabil. 2010; 89: 390-400
        • Boninger M.L.
        • Cooper R.A.
        • Baldwin M.A.
        • Shimada S.D.
        • Koontz A.
        Wheelchair pushrim kinetics: body weight and median nerve function.
        Arch Phys Med Rehabil. 1999; 80: 910-915
        • Boninger M.L.
        • Cooper R.A.
        • Robertson R.N.
        • Rudy T.E.
        Wrist biomechanics during two speeds of wheelchair propulsion: an analysis using a local coordinate system.
        Arch Phys Med Rehabil. 1997; 78: 364-372
        • Robertson R.N.
        • Boninger M.L.
        • Cooper R.A.
        • Shimada S.D.
        Pushrim forces and joint kinetics during wheelchair propulsion.
        Arch Phys Med Rehabil. 1996; 77: 856-864
        • Mercer J.L.
        • Boninger M.
        • Koontz A.
        • Ren D.
        • Dyson-Hudson T.
        • Cooper R.
        Shoulder joint kinetics and pathology in manual wheelchair users.
        Clin Biomech (Bristol, Avon). 2006; 21: 781-789
        • Veeger H.E.J.
        • van der Woude L.H.J.
        • Rozendal R.H.
        Effect of handrim velocity on mechanical efficiency in WC propulsion.
        Med Sci Sport Exer. 1992; 24: 100-107
        • de Groot S.
        • Veeger H.E.J.
        • Hollander A.P.
        • van der Woude L.H.V.
        Consequence of feedback-based learning of an effective hand rim wheelchair force production on mechanical efficiency.
        Clin Biomech (Bristol, Avon). 2002; 17: 219-226
        • Bossuyt F.M.
        • Hogaboom N.S.
        • Worobey L.A.
        • Koontz A.M.
        • Arnet U.
        • Boninger M.L.
        Start-up propulsion biomechanics changes with fatiguing activity in persons with spinal cord injury.
        J Spinal Cord Med. 2020; 43: 476-484
        • Boninger M.L.
        • Koontz A.M.
        • Sisto S.A.
        • et al.
        Pushrim biomechanics and injury prevention in spinal cord injury: recommendations based on CULP-SCI investigations.
        J Rehabil Res Dev. 2005; 42: 9-19
        • Boninger M.L.
        • Souza A.L.
        • Cooper R.A.
        • Fitzgerald S.G.
        • Koontz A.M.
        • Fay B.T.
        Propulsion patterns and pushrim biomechanics in manual wheelchair propulsion.
        Arch Phys Med Rehabil. 2002; 83: 718-723
        • Boninger M.L.
        • Impink B.G.
        • Cooper R.A.
        • Koontz A.M.
        Relation between median and ulnar nerve function and wrist kinematics during wheelchair propulsion.
        Arch Phys Med Rehabil. 2004; 85: 1141-1145
        • Collinger J.L.
        • Boninger M.L.
        • Koontz A.M.
        • et al.
        Shoulder biomechanics during the push phase of wheelchair propulsion: a multisite study of persons with paraplegia.
        Arch Phys Med Rehabil. 2008; 89: 667-676
        • Walford S.L.
        • Requejo P.S.
        • Mulroy S.J.
        • Neptune R.R.
        Predictors of shoulder pain in manual wheelchair users.
        Clin Biomech (Bristol, Avon). 2019; 65: 1-12
        • Kwarciak A.M.
        • Sisto S.A.
        • Yarossi M.
        • Price R.
        • Komaroff E.
        • Boninger M.L.
        Redefining the manual wheelchair stroke cycle: identification and impact of nonpropulsive pushrim contact.
        Arch Phys Med Rehabil. 2009; 90: 20-26
        • Armstrong T.J.
        • Fine L.J.
        • Goldstein S.A.
        • Lifshitz Y.R.
        • Silverstein B.A.
        Ergonomics considerations in hand and wrist tendinitis.
        J Hand Surg Am. 1987; 12: 830-837
        • Bao S.
        • Spielholz P.
        • Howard N.
        • Silverstein B.
        Force measurement in field ergonomics research and application.
        Int J Indust Ergonom. 2009; 39: 333-340
        • Jayaraman C.
        • Beck C.L.
        • Sosnoff J.J.
        Shoulder pain and jerk during recovery phase of manual wheelchair propulsion.
        J Biomech. 2015; 48: 3937-3944
        • van der Woude L.H.
        • de Groot G.
        • Hollander A.P.
        • van Ingen Schenau G.J.
        • Rozendal R.H.
        Wheelchair ergonomics and physiological testing of prototypes.
        Ergonomics. 1986; 29: 1561-1573
        • de Groot S.
        • Zuidgeest M.
        • van der Woude L.H.
        Standardization of measuring power output during wheelchair propulsion on a treadmill Pitfalls in a multi-center study.
        Med Eng Phys. 2006; 28: 604-612
        • Veeger D.
        • van der Woude L.H.
        • Rozendal R.H.
        The effect of rear wheel camber in manual wheelchair propulsion.
        J Rehabil Res Dev. 1989; 26: 37-46
        • Arnet U.
        • van Drongelen S.
        • Veeger D.H.
        • van er Woude L.H.V.
        Force application during handcycling and handrim wheelchair propulsion: an initial comparison.
        J Appl Biomech. 2013; 29: 687-695
        • Chenier F.
        • Champagne A.
        • Desroches G.
        • Gagnon D.H.
        Unmatched speed perceptions between overground and treadmill manual wheelchair propulsion in long-term manual wheelchair users.
        Gait Posture. 2018; 61: 398-402
        • Boninger M.L.
        • Dicianno B.E.
        • Cooper R.A.
        Towers JD, Koontz Am, Souza AL. Shoulder magnetic resonance imaging abnormalities, wheelchair propulsion, and gender.
        Arch Phys Med Rehabil. 2003; 84: 1615-1620
        • Hogan N.
        • Sternad D.
        Sensitivity of smoothness measures to movement duration, amplitude, and arrests.
        J Mot Behav. 2009; 41: 529-534
        • Rice I.M.
        • Jayaraman C.
        • Hsiao-Wecksler E.T.
        • Sosnoff J.J.
        Relationship between shoulder pain and kinetic and temporal-spatial variability in wheelchair users.
        Arch Phys Med Rehabil. 2014; 95: 699-704
        • Schultz M.
        • Lee T.
        • Nance P.
        Musculoskeletal and neuromuscular implications of gender differences in spinal cord injury.
        Top Spinal Cord Inj Rehabil. 2001; 7: 72-86