Advertisement

Quantitative Synthesis of Timed 25-Foot Walk Performance in Multiple Sclerosis

Published:October 24, 2019DOI:https://doi.org/10.1016/j.apmr.2019.08.488

      Abstract

      Objective

      To provide a meta-analysis of articles that have included the timed 25-foot walk (T25FW) in persons with multiple sclerosis (MS), quantify differences in T25FW scores between those with MS and controls without MS, and quantify differences between categories of disability status and clinical disease courses within MS.

      Data Sources

      The literature search was conducted using 4 databases (Google Scholar, PubMed, Cumulative Index to Nursing and Allied Health, EBSCO Host). We searched reference lists of published articles to identify additional articles.

      Study Selection

      A systematic literature search identified articles reporting average T25FW performance in seconds between those with MS and controls without MS, between those with MS who had mild and moderate and/or severe disability status, and between relapsing-remitting and progressive clinical courses of MS.

      Data Extraction

      Information was extracted and categorized based on reported data: comparisons of controls without MS and MS, comparisons of mild and moderate and/or severe MS based on study-defined Expanded Disability Status Scale groups, and comparisons of relapsing-remitting and progressive MS clinical courses.

      Data Synthesis

      We performed a random effects meta-analysis to quantify differences between groups as estimated by effect sizes (ESs). We expressed the differences in Cohen d as well as the original units of the T25FW (ie, seconds).

      Conclusions

      There was a large difference in T25FW performance in MS compared with controls without MS (ES=−0.93, mean difference=2.4s, P<.01). Persons with moderate and/or severe disability walked substantially slower compared with mild disability (ES=−1.02, mean difference=5.4s, P<.01), and persons with progressive courses of MS walked substantially slower than relapsing-remitting MS (ES=−1.4, mean difference=13.4s, P<.01).

      Keywords

      List of abbreviations:

      CMA (Comprehensive Meta-analysis), ES (effect size), MS (multiple sclerosis), QOL (quality of life), T25FW (timed 25-foot walk)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Archives of Physical Medicine and Rehabilitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wallin M.T.
        • Culpepper W.J.
        • Campbell J.D.
        • et al.
        The prevalence of MS in the United States: a population-based estimate using health claims data.
        Neurology. 2019; 92: 10-40
        • Hemmett L.
        • Holmes J.
        • Barnes M.
        • Russell N.
        What drives quality of life in multiple sclerosis?.
        QJM. 2004; 97: 671-676
        • Bethoux F.
        • Bennett S.
        Evaluating walking in patients with multiple sclerosis: which assessment tools are useful in clinical practice?.
        Int J MS Care. 2011; 13: 4-14
        • LaRocca N.G.
        Impact of walking impairment in multiple sclerosis: perspectives of patients and care partners.
        Patient. 2011; 4: 189-201
        • Goldman M.D.
        • Motl R.W.
        • Rudick R.A.
        Possible clinical outcome measures for clinical trials in patients with multiple sclerosis.
        Ther Adv Neurol Disord. 2010; 3: 229-239
        • Motl R.W.
        • Cohen J.A.
        • Benedict R.
        • et al.
        Validity of the timed 25-foot walk as an ambulatory performance outcome measure for multiple sclerosis.
        Mult Scler. 2017; 23: 704-710
        • Baird J.F.
        • Sandroff B.M.
        • Motl R.W.
        Therapies for mobility disability in persons with multiple sclerosis.
        Expert Rev Neurother. 2018; 18: 493-502
        • Kieseier B.C.
        • Pozzilli C.
        Assessing walking disability in multiple sclerosis.
        Mult Scler. 2012; 18: 914-924
        • Cutter G.R.
        • Baier M.L.
        • Rudick R.A.
        • et al.
        Development of a multiple sclerosis functional composite as a clinical trial outcome measure.
        Brain. 1999; 122: 871-882
        • Rudick R.
        • Antel J.
        • Confavreux C.
        • et al.
        Recommendations from the national multiple sclerosis society clinical outcomes assessment task force.
        Ann Neurol. 1997; 42: 379-382
        • Filli L.
        • Sutter T.
        • Easthope C.S.
        • et al.
        Profiling walking dysfunction in multiple sclerosis: characterisation, classification and progression over time.
        Sci Rep. 2018; 8: 4984
        • Baert I.
        • Freeman J.
        • Smedal T.
        • et al.
        Responsiveness and clinically meaningful improvement, according to disability level, of five walking measures after rehabilitation in multiple sclerosis: a European multicenter study.
        Neurorehabil Neural Repair. 2014; 28: 621-631
        • Daams M.
        • Steenwijk M.D.
        • Wattjes M.P.
        • et al.
        Unraveling the neuroimaging predictors for motor dysfunction in long-standing multiple sclerosis.
        Neurology. 2015; 85: 248-255
        • Impellizzeri F.M.
        • Bizzini M.
        Systematic review and meta-analysis: a primer.
        Int J Sports Phys Ther. 2012; 7: 493
        • Holly C.
        • Slyer J.T.
        Interpreting and using meta-analysis in clinical practice.
        Orthop Nurs. 2013; 32: 106-110
        • Cohen J.
        Statistical power analysis for the behavioral sciences.
        2nd ed. L. Erlbaum Associates, Hillsdale1988
        • Egger M.
        • Smith G.D.
        Misleading meta-analysis.
        BMJ. 1995; 311: 753-754
        • Egger M.
        • Smith G.D.
        • Schneider M.
        • Minder C.
        Bias in meta-analysis detected by a simple, graphical test.
        BMJ. 1997; 315: 629-634
        • Damasceno A.
        • Damasceno B.P.
        • Cendes F.
        The clinical impact of cerebellar grey matter pathology in multiple sclerosis.
        PLoS One. 2014; 9e96193
        • Wagner J.M.
        • Kremer T.R.
        • Van Dillen L.R.
        • Naismith R.T.
        Plantarflexor weakness negatively impacts walking in persons with multiple sclerosis more than plantarflexor spasticity.
        Arch Phys Med Rehabil. 2014; 95: 1358-1365
        • Drake A.S.
        • Weinstock-Guttman B.
        • Morrow S.A.
        • Hojnacki D.
        • Munschauer F.E.
        • Benedict R.H.B.
        Psychometrics and normative data for the Multiple Sclerosis Functional Composite: replacing the PASAT with the Symbol Digit Modalities Test.
        Mult Scler. 2010; 16: 228-237
        • Fritz N.E.
        • Keller J.
        • Calabresi P.A.
        • Zackowski K.M.
        Quantitative measures of walking and strength provide insight into brain corticospinal tract pathology in multiple sclerosis.
        Neuroimage Clin. 2017; 14: 490-498
        • Spain R.I.
        • George R.S.
        • Salarian A.
        • et al.
        Body-worn motion sensors detect balance and gait deficits in people with multiple sclerosis who have normal walking speed.
        Gait Posture. 2012; 35: 573-578
        • Phan-Ba R.
        • Calay P.
        • Grodent P.
        • et al.
        Motor fatigue measurement by distance-induced slow down of walking speed in multiple sclerosis.
        PLoS One. 2012; 7e34744
        • Sandroff B.M.
        • Sosnoff J.J.
        • Motl R.W.
        Physical fitness, walking performance, and gait in multiple sclerosis.
        J Neurol Sci. 2013; 328: 70-76
        • Novotna K.
        • Sobisek L.
        • Horakova D.
        • Havrdova E.
        • Preiningerova J.L.
        Quantification of gait abnormalities in healthy-looking multiple sclerosis patients (with expanded disability status scale 0-1.5).
        Eur Neurol. 2016; 76: 99-104
        • Sandroff B.M.
        • Benedict R.H.
        • Motl R.W.
        Nonsignificant associations between measures of inhibitory control and walking while thinking in persons with multiple sclerosis.
        Arch Phys Med Rehabil. 2015; 96: 1518-1524
        • Grobelny A.
        • Behrens J.R.
        • Mertens S.
        • et al.
        Maximum walking speed in multiple sclerosis assessed with visual perceptive computing.
        PloS One. 2017; 12e0189281
        • Costa S.L.
        • DeLuca J.
        • Sandroff B.M.
        • Goverover Y.
        • Chiaravalloti N.D.
        Role of demographic and clinical factors in cognitive functioning of persons with relapsing-remitting and progressive multiple sclerosis.
        J Int Neuropsychol Soc. 2018; 24: 139-146
        • Spain R.I.
        • Mancini M.
        • Horak F.B.
        • Bourdette D.
        Body-worn sensors capture variability, but not decline, of gait and balance measures in multiple sclerosis over 18 months.
        Gait Posture. 2014; 39: 958-964
        • Pau M.
        • Caggiari S.
        • Mura A.
        • et al.
        Clinical assessment of gait in individuals with multiple sclerosis using wearable inertial sensors: comparison with patient-based measure.
        Mult Scler Relat Disord. 2016; 10: 187-191
        • Behrens J.R.
        • Mertens S.
        • Krüger T.
        • et al.
        Validity of visual perceptive computing for static posturography in patients with multiple sclerosis.
        Mult Scler. 2016; 22: 1596-1606
        • Peterson D.S.
        • Huisinga J.M.
        • Spain R.I.
        • Horak F.B.
        Characterization of compensatory stepping in people with multiple sclerosis.
        Arch Phys Med Rehabil. 2016; 97: 513-521
        • Benedict R.H.
        • Drake A.S.
        • Irwin L.N.
        • et al.
        Benchmarks of meaningful impairment on the MSFC and BICAMS.
        Mult Scler. 2016; 22: 1874-1882
        • Kiylioglu N.
        • Parlaz A.U.
        • Akyildiz U.O.
        • Tataroglu C.
        Evoked potentials and disability in multiple sclerosis: a different perspective to a neglected method.
        Clin Neurol Neurosurg. 2015; 133: 11-17
        • Motl R.W.
        • Zivadinov R.
        • Bergsland N.
        • Benedict R.H.
        Thalamus volume and ambulation in multiple sclerosis: a cross-sectional study.
        Neurodegener Dis Manag. 2016; 6: 23-29
        • Harp M.A.
        • McCully K.K.
        • Moldavskiy M.
        • Backus D.
        Skeletal muscle mitochondrial capacity in people with multiple sclerosis.
        Mult Scler J Exp Transl Clin. 2016; 2 (2055217316678020)
        • Alvarenga-Filho H.
        • Papais-Alvarenga R.M.
        • Carvalho S.R.
        • Clemente H.N.
        • Vasconcelos C.C.
        • Dias R.M.
        Does fatigue occur in MS patients without disability?.
        Int J Neurosci. 2015; 125: 107-115
        • Fox R.J.
        • Lee J.C.
        • Rudick R.A.
        Optimal reference population for the multiple sclerosis functional composite.
        Mult Scler. 2007; 13: 909-914
        • Cleland B.T.
        • Ingraham B.A.
        • Pitluck M.C.
        • Woo D.
        • Ng A.V.
        Reliability and validity of ratings of perceived exertion in persons with multiple sclerosis.
        Arch Phys Med Rehabil. 2016; 97: 974-982
        • Kara B.
        • Küçük F.
        • Tomruk M.S.
        • İdıman E.
        Different types of exercise in multiple sclerosis: aerobic exercise or Pilates, a single-blind clinical study.
        J Back Musculoskelet Rehabil. 2017; 30: 565-573
        • Phan-Ba R.
        • Pace A.
        • Calay P.
        • et al.
        Comparison of the timed 25-foot and the 100-meter walk as performance measures in multiple sclerosis.
        Neurorehabil Neural Repair. 2011; 25: 672-679
        • Nieuwenhuis M.M.
        • Van Tongeren H.
        • Sørensen P.S.
        • Ravnborg M.
        The six spot step test: a new measurement for walking ability in multiple sclerosis.
        Mult Scler. 2006; 12: 495-500
        • Benedict R.H.
        • Holtzer R.
        • Motl R.W.
        • et al.
        Upper and lower extremity motor function and cognitive impairment in multiple sclerosis.
        J Int Neuropsychol Soc. 2011; 17: 643-653
        • Learmonth Y.C.
        • Paul L.
        • McFadyen A.K.
        • et al.
        Short-term effect of aerobic exercise on symptoms in multiple sclerosis and chronic fatigue syndrome: a pilot study.
        Int J MS Care. 2014; 16: 76-82
        • Roy S.
        • Frndak S.
        • Drake A.S.
        • Irwin L.
        • et al.
        Differential effects of aging on motor and cognitive functioning in multiple sclerosis.
        Mult Scler. 2017; 23: 1385-1393
        • Bollaert R.E.
        • Motl R.W.
        Physical and cognitive functions, physical activity, and sedentary behavior in older adults with multiple sclerosis.
        J Geriatr Phys Ther. 2019; 42: 304-312
        • Witchel H.J.
        • Oberndorfer C.
        • Needham R.
        • et al.
        Thigh-derived inertial sensor metrics to assess the sit-to-stand and stand-to-sit transitions in the timed up and go (TUG) task for quantifying mobility impairment in multiple sclerosis.
        Front Neurol. 2018; 9: 684
        • Valentine J.C.
        • Pigott T.D.
        • Rothstein H.R.
        How many studies do you need? A primer on statistical power for meta-analysis.
        J Educ Behav Stat. 2010; 35: 215-247
        • Quintana D.
        • Tiebel J.
        How to calculate statistical power for your meta-analysis.
        (Available at:) (Accessed June 15, 2019)
        • Gijbels D.
        • Dalgas U.
        • Romberg A.
        • et al.
        Which walking capacity tests to use in multiple sclerosis? A multicentre study providing the basis for a core set.
        Mult Scler. 2012; 18: 364-371
        • Learmonth Y.C.
        • Dlugonski D.D.
        • Pilutti L.A.
        • Sandroff B.M.
        • Motl R.W.
        The reliability, precision and clinically meaningful change of walking assessments in multiple sclerosis.
        Mult Scler. 2013; 19: 1784-1791
        • Fritz N.E.
        • Jiang A.
        • Keller J.
        • Zackowski K.M.
        Utility of the six-spot step test as a measure of walking performance in ambulatory individuals with multiple sclerosis.
        Arch Phys Med Rehabil. 2016; 97: 507-512
        • Hubbard E.A.
        • Motl R.W.
        Sedentary behavior is associated with disability status and walking performance, but not cognitive function, in multiple sclerosis.
        Appl Physiol Nutr Metab. 2014; 40: 203-206
        • Sandroff B.M.
        • Motl R.W.
        • Sosnoff J.J.
        • Pula J.H.
        Further validation of the Six-Spot Step Test as a measure of ambulation in multiple sclerosis.
        Gait Posture. 2015; 41: 222-227
        • Marrie R.A.
        • Goldman M.
        Validation of the NARCOMS registry: Tremor and Coordination Scale.
        Int J MS Care. 2011; 13: 114-120
        • Gijbels D.
        • Alders G.
        • Van Hoof E.
        • et al.
        Predicting habitual walking performance in multiple sclerosis: relevance of capacity and self-report measures.
        Mult Scler. 2010; 16: 618-626
        • Broekmans T.
        • Gijbels D.
        • Eijnde B.O.
        • et al.
        The relationship between upper leg muscle strength and walking capacity in persons with multiple sclerosis.
        Mult Scler. 2013; 19: 112-119
        • Huisinga J.M.
        • St George R.J.
        • Spain R.
        • Overs S.
        • Horak F.B.
        Postural response latencies are related to balance control during standing and walking in patients with multiple sclerosis.
        Arch Phys Med Rehabil. 2014; 95: 1390-1397
        • Wolinsky J.S.
        • PROMiSe Trial Study Group
        The PROMiSe trial: baseline review and progress report.
        Mult Scler. 2004; 10: 65-72
        • Neven A.
        • Janssens D.
        • Alders G.
        • Wets G.
        • Wijmeersch B.V.
        • Feys P.
        Documenting outdoor activity and travel behaviour in persons with neurological conditions using travel diaries and GPS tracking technology: a pilot study in multiple sclerosis.
        Disabil Rehabil. 2013; 35: 1718-1725
        • Ertekin Ö.
        • Özakbas S.
        • İdiman E.
        Early deterioration in quality of life and physical functioning of multiple sclerosis patients.
        Int J Curr Res Rev. 2014; 6: 24
        • Lo A.C.
        • Triche E.W.
        Improving gait in multiple sclerosis using robot-assisted, body weight supported treadmill training.
        Neurorehabil Neural Repair. 2008; 22: 661-671
        • Fritz N.E.
        • Newsome S.D.
        • Eloyan A.
        • Marasigan R.E.R.
        • Calabresi P.A.
        • Zackowski K.M.
        Longitudinal relationships among posturography and gait measures in multiple sclerosis.
        Neurology. 2015; 84: 2048-2056
        • Cadavid D.
        • Jurgensen S.
        • Lee S.
        Impact of natalizumab on ambulatory improvement in secondary progressive and disabled relapsing-remitting multiple sclerosis.
        PLoS One. 2013; 8e53297
        • Ozturk A.
        • Smith S.A.
        • Gordon-Lipkin E.M.
        • et al.
        MRI of the corpus callosum in multiple sclerosis: association with disability.
        Mult Scler. 2010; 16: 166-177
        • Shiee N.
        • Bazin P.L.
        • Zackowski K.M.
        • et al.
        Revisiting brain atrophy and its relationship to disability in multiple sclerosis.
        PLoS One. 2012; 7e37049
        • Norman G.R.
        • Sloan J.A.
        • Wyrwich K.W.
        Interpretation of changes in health-related quality of life: the remarkable universality of half a standard deviation.
        Med Care. 2003; : 582-592
        • Cohen J.A.
        • Krishnan A.V.
        • Goodman A.D.
        • et al.
        The clinical meaning of walking speed as measured by the timed 25-foot walk in patients with multiple sclerosis.
        JAMA Neurol. 2014; 71: 1386-1393
        • Hobart J.
        • Blight A.R.
        • Goodman A.
        • Lynn F.
        • Putzki N.
        Timed 25-foot walk: direct evidence that improving 20% or greater is clinically meaningful in MS.
        Neurology. 2013; 80: 1509-1517
        • Goldman M.D.
        • Motl R.W.
        • Scagnelli J.
        • Pula J.H.
        • Sosnoff J.J.
        • Cadavid D.
        Clinically meaningful performance benchmarks in MS timed 25-foot walk and the real world.
        Neurology. 2013; 81: 1856-1863
        • Heesen C.
        • Böhm J.
        • Reich C.
        • Kasper J.
        • Goebel M.
        • Gold S.M.
        Patient perception of bodily functions in multiple sclerosis: gait and visual function are the most valuable.
        Mult Scler. 2008; 14: 988-991