Advertisement

Peak Cough Flow Fails to Detect Upper Airway Collapse During Negative Pressure Titration for Cough-Assist

  • Matthieu Lacombe
    Affiliations
    Réanimation Médicale, Physiologie - Explorations Fonctionnelles, et Centre d’Investigation Clinique, UMR 1429, Hôpital Raymond Poincaré, Garches, France
    Search for articles by this author
  • Aurélien Boré
    Affiliations
    Réanimation Médicale, Physiologie - Explorations Fonctionnelles, et Centre d’Investigation Clinique, UMR 1429, Hôpital Raymond Poincaré, Garches, France
    Search for articles by this author
  • Lorena Del Amo Castrillo
    Affiliations
    Réanimation Médicale, Physiologie - Explorations Fonctionnelles, et Centre d’Investigation Clinique, UMR 1429, Hôpital Raymond Poincaré, Garches, France
    Search for articles by this author
  • Ghilas Boussaïd
    Affiliations
    INSERM-UMR, 1179, Université de Versailles Saint-Quentin-en-Yvelines, Hôpital Raymond Poincaré, Garches, France
    Search for articles by this author
  • Line Falaize
    Affiliations
    Réanimation Médicale, Physiologie - Explorations Fonctionnelles, et Centre d’Investigation Clinique, UMR 1429, Hôpital Raymond Poincaré, Garches, France

    INSERM-UMR, 1179, Université de Versailles Saint-Quentin-en-Yvelines, Hôpital Raymond Poincaré, Garches, France
    Search for articles by this author
  • Erica Vlachos
    Affiliations
    Réanimation Médicale, Physiologie - Explorations Fonctionnelles, et Centre d’Investigation Clinique, UMR 1429, Hôpital Raymond Poincaré, Garches, France
    Search for articles by this author
  • David Orlikowski
    Affiliations
    Réanimation Médicale, Physiologie - Explorations Fonctionnelles, et Centre d’Investigation Clinique, UMR 1429, Hôpital Raymond Poincaré, Garches, France

    INSERM-UMR, 1179, Université de Versailles Saint-Quentin-en-Yvelines, Hôpital Raymond Poincaré, Garches, France
    Search for articles by this author
  • Hélène Prigent
    Affiliations
    Réanimation Médicale, Physiologie - Explorations Fonctionnelles, et Centre d’Investigation Clinique, UMR 1429, Hôpital Raymond Poincaré, Garches, France

    INSERM-UMR, 1179, Université de Versailles Saint-Quentin-en-Yvelines, Hôpital Raymond Poincaré, Garches, France
    Search for articles by this author
  • Frédéric Lofaso
    Correspondence
    Corresponding author Frédéric Lofaso, MD, PhD, Services de Physiologie et Explorations Fonctionnelles, Hôpital Raymond Poincaré, AP-HP, 92380 Garches, France.
    Affiliations
    Réanimation Médicale, Physiologie - Explorations Fonctionnelles, et Centre d’Investigation Clinique, UMR 1429, Hôpital Raymond Poincaré, Garches, France

    INSERM-UMR, 1179, Université de Versailles Saint-Quentin-en-Yvelines, Hôpital Raymond Poincaré, Garches, France
    Search for articles by this author

      Highlights

      • Cough efficacy is usually assessed by peak cough flow measurement.
      • Peak cough flow measurement fails to detect upper airway collapse during mechanical insufflation-exsufflation.
      • Adding effective cough volume measurement to peak cough flow might be helpful to detect upper airway collapse during mechanical insufflation-exsufflation and determine the best exsufflation pressure settings.

      Abstract

      Objective

      To study the ability of peak cough flow (PCF) and effective cough volume, defined as the volume exsufflated >3 L/s, to detect upper airway collapse during mechanical insufflation-exsufflation (MI-E) titration in neuromuscular patients.

      Design

      Prospective observational study.

      Setting

      Rehabilitation hospital.

      Participants

      Patients (N=27) with neuromuscular disease causing significant impairment of chest wall and/or diaphragmatic movement.

      Interventions

      The lowest insufflation pressure producing the highest inspiratory capacity was used. Exsufflation pressure was decreased from −20 cm H2O to −60/−70 cm H2O, in 10-cm H2O decrements, until upper airway collapse was detected using the reference standard of flow-volume curve analysis (after PCF, abrupt flattening or flow decrease vs previous less negative exsufflation pressure).

      Main Outcome Measures

      PCF and effective cough volume profiles during expiration with MI-E.

      Results

      Upper airway collapse occurred in 10 patients during titration. Effective cough volume increased with decreasing expiratory pressure then decreased upon upper airway collapse occurrence. PCF continued to increase after upper airway collapse occurrence. In 5 other patients, upper airway collapse occurred at the initial −20 cm H2O exsufflation pressure, and during titration, PCF increased and effective cough volume remained unchanged at <200 mL. PCF had 0% sensitivity for upper airway collapse, whereas effective cough volume had 100% sensitivity and specificity.

      Conclusion

      Of 27 patients, 15 experienced upper airway collapse during MI-E titration. Upper airway collapse was associated with an effective cough volume decrease or plateau and with increasing PCF. Accordingly, effective cough volume, but not PCF, can detect upper airway collapse.

      Keywords

      List of abbreviations:

      MEP (maximum expiratory pressure), MI-E (mechanical insufflation-exsufflation), MIP (maximum inspiratory pressure), NMD (neuromuscular disease), OSA (obstructive sleep apnea), PCF (peak cough flow), VC (vital capacity)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Archives of Physical Medicine and Rehabilitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ambrosino N.
        • Carpene N.
        • Gherardi M.
        Chronic respiratory care for neuromuscular diseases in adults.
        Eur Respir J. 2009; 34: 444-451
        • Benditt J.O.
        • Boitano L.J.
        Pulmonary issues in patients with chronic neuromuscular disease.
        Am J Respir Crit Care Med. 2013; 187: 1046-1055
        • Bach J.R.
        Mechanical insufflation-exsufflation. Comparison of peak expiratory flows with manually assisted and unassisted coughing techniques.
        Chest. 1993; 104: 1553-1562
        • Hull J.
        • Aniapravan R.
        • Chan E.
        • et al.
        British Thoracic Society guideline for respiratory management of children with neuromuscular weakness.
        Thorax. 2012; 67: i1-i40
        • Bott J.
        • Blumenthal S.
        • Buxton M.
        • et al.
        Guidelines for the physiotherapy management of the adult, medical, spontaneously breathing patient.
        Thorax. 2009; 64: i1-i51
        • Chatwin M.
        • Toussaint M.
        • Goncalves M.R.
        • et al.
        Airway clearance techniques in neuromuscular disorders: a state of the art review.
        Respir Med. 2018; 136: 98-110
        • Bach J.R.
        • Saporito L.R.
        Criteria for extubation and tracheostomy tube removal for patients with ventilatory failure. A different approach to weaning.
        Chest. 1996; 110: 1566-1571
        • Bach J.R.
        • Ishikawa Y.
        • Kim H.
        Prevention of pulmonary morbidity for patients with Duchenne muscular dystrophy.
        Chest. 1997; 112: 1024-1028
        • Dohna-Schwake C.
        • Ragette R.
        • Teschler H.
        • Voit T.
        • Mellies U.
        Predictors of severe chest infections in pediatric neuromuscular disorders.
        Neuromuscul Disord. 2006; 16: 325-328
        • Boitano L.J.
        Management of airway clearance in neuromuscular disease.
        Respir Care. 2006; 51 ([discussion 22-4]): 913-922
        • Leger P.
        • Paulus J.
        [Recommendations of HAS: Practical issues in home non-invasive ventilation in patients with neuromuscular disease] [French].
        Rev Mal Respir. 2006; 23 (13S141-3)
        • Rokadia H.K.
        • Adams J.R.
        • McCarthy K.
        • Aboussouan L.S.
        • Mireles-Cabodevila E.
        Cough augmentation in a patient with neuromuscular disease.
        Ann Am Thorac Soc. 2015; 12: 1888-1891
        • Sancho J.
        • Servera E.
        • Banuls P.
        • Marin J.
        Effectiveness of assisted and unassisted cough capacity in amyotrophic lateral sclerosis patients.
        Amyotroph Lateral Scler Frontotemporal Degener. 2017; 18: 498-504
        • Toussaint M.
        • Boitano L.J.
        • Gathot V.
        • Steens M.
        • Soudon P.
        Limits of effective cough-augmentation techniques in patients with neuromuscular disease.
        Respir Care. 2009; 54: 359-366
        • Suarez A.A.
        • Pessolano F.A.
        • Monteiro S.G.
        • et al.
        Peak flow and peak cough flow in the evaluation of expiratory muscle weakness and bulbar impairment in patients with neuromuscular disease.
        Am J Phys Med Rehabil. 2002; 81: 506-511
        • Morrow B.
        • Zampoli M.
        • van Aswegen H.
        • Argent A.
        Mechanical insufflation-exsufflation for people with neuromuscular disorders.
        Cochrane Database Syst Rev. 2013; 12: CD010044
        • Mellies U.
        • Goebel C.
        Optimum insufflation capacity and peak cough flow in neuromuscular disorders.
        Ann Am Thorac Soc. 2014; 11: 1560-1568
        • Andersen T.
        • Sandnes A.
        • Brekka A.K.
        • et al.
        Laryngeal response patterns influence the efficacy of mechanical assisted cough in amyotrophic lateral sclerosis.
        Thorax. 2017; 72: 221-229
        • Sancho J.
        • Servera E.
        • Diaz J.
        • Marin J.
        Efficacy of mechanical insufflation-exsufflation in medically stable patients with amyotrophic lateral sclerosis.
        Chest. 2004; 125: 1400-1405
      1. Standardized lung function testing. Official statement of the European Respiratory Society.
        Eur Respir J Suppl. 1993; 16: 1-100
        • Hart N.
        • Polkey M.I.
        • Sharshar T.
        • et al.
        Limitations of sniff nasal pressure in patients with severe neuromuscular weakness.
        J Neurol Neurosurg Psychiatry. 2003; 74: 1685-1687
        • Trebbia G.
        • Lacombe M.
        • Fermanian C.
        • et al.
        Cough determinants in patients with neuromuscular disease.
        Respir Physiol Neurobiol. 2005; 146: 291-300
        • Miller M.R.
        • Hankinson J.
        • Brusasco V.
        • et al.
        Standardisation of spirometry.
        Eur Respir J. 2005; 26: 319-338
        • Insalaco G.
        • Romano S.
        • Marrone O.
        • Salvaggio A.
        • Bonsignore G.
        A new method of negative expiratory pressure test analysis detecting upper airway flow limitation to reveal obstructive sleep apnea.
        Chest. 2005; 128: 2159-2165
        • Mead J.
        • Turner J.M.
        • Macklem P.T.
        • Little J.B.
        Significance of the relationship between lung recoil and maximum expiratory flow.
        J Appl Physiol. 1967; 22: 95-108
        • Lachal R.
        • Louis B.
        • Subtil F.
        • Guerin C.
        Bench assessment of the effect of a collapsible tube on the efficiency of a mechanical insufflation-exsufflation device.
        Respir Care. 2019; 64: 752-759
        • Chousangsuntorn K.
        • Bhongmakapat T.
        • Apirakkittikul N.
        • Sungkarat W.
        • Supakul N.
        • Laothamatas J.
        Upper airway areas, volumes, and linear measurements determined on computed tomography during different phases of respiration predict the presence of severe obstructive sleep apnea.
        J Oral Maxillofac Surg. 2018; 76: 1524-1531
        • Boutet C.
        • Abdirahman Mohamed Moussa S.
        • Celle S.
        • et al.
        Supra-epiglottic upper airway volume in elderly patients with obstructive sleep apnea hypopnea syndrome.
        PloS One. 2016; 11e0157720
        • Messina S.
        • Pane M.
        • De Rose P.
        • et al.
        Feeding problems and malnutrition in spinal muscular atrophy type II.
        Neuromuscul Disord. 2008; 18: 389-393
        • Lacombe M.
        • Del Amo Castrillo L.
        • Bore A.
        • et al.
        Comparison of three cough-augmentation techniques in neuromuscular patients: mechanical insufflation combined with manually assisted cough, insufflation-exsufflation alone and insufflation-exsufflation combined with manually assisted cough.
        Respiration. 2014; 88: 215-222