Advertisement

Relationship Between Observational Wisconsin Gait Scale, Gait Deviation Index, and Gait Variability Index in Individuals Poststroke

Published:January 25, 2019DOI:https://doi.org/10.1016/j.apmr.2018.12.031

      Abstract

      Objective

      To compare results of the observational Wisconsin Gait Scale (WGS) and global gait indexes such as Gait Deviation Index (GDI) and Gait Variability Index (GVI), constituting an objective method of assessing gait, and taking into account parameters identified during 3-dimensional gait analysis (3DGA).

      Design

      A validation study.

      Setting

      Rehabilitation clinic.

      Participants

      A total of 50 individuals poststroke and 50 individuals without stroke and without gait disorders (N=100).

      Interventions

      Not applicable.

      Main Outcome Measures

      Gait was evaluated using the WGS. GDI and GVI values were acquired using a movement analysis system. The global gait indexes GDI and GVI were determined based on the kinematic and spatiotemporal parameters, respectively.

      Results

      The study showed statistically significant correlations between the parameters of GDI affected leg and WGS total score (R=-0.87), GVI affected leg and WGS total score (R=-0.93), GVI unaffected leg and WGS total score (R=-0.88), GVI affected/unaffected leg and the total score in the assessment of spatiotemporal parameters on the WGS (R=-0.81) as well as GDI affected leg and the total score in the assessment of kinematics parameters on the WGS (R=-0.85). All correlations were strong (0.7<|R|<0.9) or very strong (0.9<|R|<1).

      Conclusions

      WGS scores have a strong or very strong correlation with GDI and GVI. The WGS may be recommended as a substitute tool to be used when 3DGA is unavailable, as it is a useful ordinal scale, enabling simple and accurate observational assessment of gait in patients poststroke, with effectiveness that is comparable to the GDI and GVI.

      Keywords

      List of abbreviations:

      3D (3-dimensional), 3DGA (3-dimensional gait analysis), GDI (Gait Deviation Index), GVI (Gait Variability Index), GGI (Gillette Gait Index), ROC (receiver operating characteristic), WGS (Wisconsin Gait Scale)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Archives of Physical Medicine and Rehabilitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wellmon R.
        • Degano A.
        • Rubertone J.A.
        • Campbell S.
        • Russo K.A.
        Interrater and intrarater reliability and minimal detectable change of the Wisconsin Gait Scale when used to examine videotaped gait in individuals post-stroke.
        Arch Physiother. 2015; 5: 11
        • Chen G.
        • Patten C.
        • Kothari D.H.
        • Zajac F.E.
        Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds.
        Gait Posture. 2005; 22: 51-56
        • Lauzière S.
        • Betschart M.
        • Aissaoui R.
        • Nadeau S.
        Understanding spatial and temporal gait asymmetries in individuals post stroke.
        Int J Phys Med Rehabil. 2014; 2: 201
        • Yavuzer G.
        • Oken O.
        • Elhan A.
        • Stam H.J.
        Repeatability of lower limb three-dimensional kinematics in patients with stroke.
        Gait Posture. 2008; 27: 31-35
        • Gouelle A.
        • Mégrot F.
        • Presedo A.
        • Husson I.
        • Yelnik A.
        • Penneçot G.F.
        The Gait Variability Index: a new way to quantify fluctuation magnitude of spatiotemporal parameters during gait.
        Gait Posture. 2013; 38: 461-465
        • Schwartz M.B.
        • Rozumalski A.
        The Gait Deviation Index: a new comprehensive index of gait pathology.
        Gait Posture. 2008; 28: 351-357
        • Correa K.P.
        • Devetak G.F.
        • Martello S.K.
        • de Almeida J.C.
        • Pauleto A.C.
        • Manffra E.F.
        Reliability and minimum detectable change of the Gait Deviation Index (GDI) in post-stroke patients.
        Gait Posture. 2017; 53: 29-34
        • Balasubramanian C.K.
        • Clark D.J.
        • Gouelle A.
        Validity of the Gait Variability Index in older adults: effect of aging and mobility impairments.
        Gait Posture. 2015; 41: 941-946
        • Alcantara C.C.
        • Alonso A.C.
        • Speciali D.S.
        The use of the Gait Deviation Index for the evaluation post-stroke Hemiparetic Subjects.
        MedicalExpress. 2017; 4: M170305
        • Guzik A.
        • Drużbicki M.
        • Przysada G.
        • Szczepanik M.
        • Bazarnik-Mucha K.
        • Kwolek A.
        The use of the Gait Variability Index for the evaluation of individuals after a stroke.
        Acta Bioeng Biomech. 2018; 20: 171-177
        • Hillman S.J.
        • Hazlewood M.E.
        • Schwartz M.H.
        • van der Linden M.L.
        • Robb E.J.
        Correlation of the Edinburgh Gait Score with the Gillette Gait Index, the Gillette Functional Assessment Questionnaire, and dimensionless speed.
        J Pediatr Orthop. 2007; 27: 7-11
        • Wren T.A.
        • Do K.P.
        • Hara R.
        • Dorey F.J.
        • Kay R.M.
        • Otsuka N.Y.
        Gillette Gait Index as a gait analysis summary measure: comparison with qualitative visual assessments of overall gait.
        J Pediatr Orthop. 2007; 27: 765-768
        • Viehweger E.
        • Zürcher Pfund L.
        • Hélix M.
        • et al.
        Influence of clinical and gait analysis experience on reliability of observational gait analysis (Edinburgh Gait Score Reliability).
        Ann Phys Rehabil Med. 2010; 53: 535-546
        • Ong A.M.
        • Hillman S.J.
        • Robb J.E.
        Reliability and validity of the Edinburgh Visual Gait Score for cerebral palsy when used by inexperienced observers.
        Gait Posture. 2008; 28: 323-326
        • Rodriquez A.
        • Black P.O.
        • Kile K.A.
        • et al.
        Gait training efficacy using a home-based practice model in chronic hemiplegia.
        Arch Phys Med Rehabil. 1996; 77: 801-805
        • Yaliman A.
        • Kesiktas N.
        • Ozkaya M.
        • Eskiyurt N.
        • Erkan O.
        • Yilmaz E.
        Evaluation of intrarater and interrater reliability of the Wisconsin Gait Scale with using the video taped stroke patients in a Turkish sample.
        NeuroRehabilitation. 2014; 34: 253-258
        • Lu X.
        • Hu N.
        • Deng S.
        • Li J.
        • Qi S.
        • Bi S.
        The reliability, validity and correlation of two observational gait scales assessed by video tape for Chinese subjects with hemiplegia.
        J Phys Ther Sci. 2015; 27: 3717-3721
        • Guzik A.
        • Drużbicki M.
        • Przysada G.
        • Brzozowska-Magoń A.
        • Wolan-Nieroda A.
        • Kwolek A.
        An assessment of the relationship between the items of the observational Wisconsin Gait Scale and the 3-dimensional spatiotemporal and kinematic parameters in post-stroke gait.
        Gait Posture. 2018; 62: 75-79
        • Pizzi A.
        • Carlucci G.
        • Falsini C.
        • Lunghi F.
        • Verdesca S.
        • Grippo A.
        Gait in hemiplegia: evaluation of clinical features with the Wisconsin Gait Scale.
        J Rehabil Med. 2007; 39: 170-174
        • Guzik A.
        • Drużbicki M.
        • Przysada G.
        • Kwolek A.
        • Brzozowska-Magoń A.
        • Wolan-Nieroda A.
        Analysis of consistency between temporospatial gait parameters and gait assessment with the use of Wisconsin Gait Scale in post-stroke patients.
        Neurol Neurochir Pol. 2017; 51: 60-65
        • Davis R.B.
        • Õunpuu S.
        • Tyburski D.
        • Gage J.R.
        A gait analysis data collection and reduction technique.
        Hum Mov Sci. 1991; 10: 575-587
        • Rubertone J.A.
        • Baldwin K.
        • Bucknum J.
        • Elias S.
        • Mitchell D.
        • Sukenick J.
        Reliability analysis of the Wisconsin Gait Scale for novice evaluators.
        Phys Ther. 2000; 80: S19
        • Mukaka M.M.
        Statistics corner: a guide to appropriate use of correlation coefficient in medical research.
        Malawi Med J. 2012; 24: 69-71
        • Ghasemi A.
        • Zahediasl S.
        Normality tests for statistical analysis: a guide for non-statisticians.
        Int J Endocrinol Metab. 2012; 10: 486-489
        • Perera S.
        • Mody S.H.
        • Woodman R.C.
        • Studenski S.A.
        Meaningful change and responsiveness in common physical performance measures in older adults.
        J Am Geriatr Soc. 2006; 54: 743-749
        • Gor-García-Fogeda M.D.
        • Cano de la Cuerda R.
        • Carratalá Tejada M.
        • Alguacil-Diego I.M.
        • Molina-Rueda F.
        Observational gait assessments in people with neurological disorders: a systematic review.
        Arch Phys Med Rehabil. 2016; 97: 131-140
        • McGinley J.L.
        • Goldie P.A.
        • Greenwood K.M.
        • Olney S.J.
        Accuracy and reliability of observational gait analysis data: judgments of push-off in gait after stroke.
        Phys Ther. 2003; 83: 146-160
        • Cretual A.
        • Bervet K.
        • Ballaz L.
        Gillette Gait Index in adults.
        Gait Posture. 2010; 32: 307-310