Advertisement

Effectiveness and Superiority of Rehabilitative Treatments in Enhancing Motor Recovery Within 6 Months Poststroke: A Systemic Review

Published:October 26, 2018DOI:https://doi.org/10.1016/j.apmr.2018.09.123

      Abstract

      Objective

      To investigate the effects of various rehabilitative interventions aimed at enhancing poststroke motor recovery by assessing their effectiveness when compared with no treatment or placebo and their superiority when compared with conventional training program (CTP).

      Data Source

      A literature search was based on 19 Cochrane reviews and 26 other reviews. We also updated the searches in PubMed up to September 30, 2017.

      Study Selection

      Randomized controlled trials associated with 18 experimented training programs (ETP) were included if they evaluated the effects of the programs on either upper extremity (UE) or lower extremity (LE) motor recovery among adults within 6 months poststroke; included ≥10 participants in each arm; and had an intervention duration of ≥10 consecutive weekdays.

      Data Extraction

      Four reviewers evaluated the eligibility and quality of literature. Methodological quality was assessed using the PEDro scale.

      Data Synthesis

      Among the 178 included studies, 129 including 7450 participants were analyzed in this meta-analysis. Six ETPs were significantly effective in enhancing UE motor recovery, with the standard mean differences (SMDs) and 95% confidence intervals outlined as follow: constraint-induced movement therapy (0.82, 0.45-1.19), electrostimulation (ES)-motor (0.42, 0.22-0.63), mirror therapy (0.71, 0.22-1.20), mixed approach (0.21, 0.01-0.41), robot-assisted training (0.51, 0.22-0.80), and task-oriented training (0.57, 0.16-0.99). Six ETPs were significantly effective in enhancing LE motor recovery: body-weight-supported treadmill training (0.27, 0.01-0.52), caregiver-mediated training (0.64, 0.20-1.08), ES-motor (0.55, 0.27-0.83), mixed approach (0.35, 0.15-0.54), mirror therapy (0.56, 0.13-1.00), and virtual reality (0.60, 0.15-1.05). However, compared with CTPs, almost none of the ETPs exhibited significant SMDs for superiority.

      Conclusions

      Certain experimented interventions were effective in enhancing poststroke motor recovery, but little evidence supported the superiority of experimented interventions over conventional rehabilitation.

      Keywords

      List of abbreviations:

      CIMT (constraint-induced movement therapy), CTP (conventional training program), ES (electrostimulation), ETP (experimented training program (ETP)), FMA (Fugl-Meyer assessment), LE (lower extremity), RCT (randomized control trial), SMD (standard mean difference), UE (upper extremity)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Archives of Physical Medicine and Rehabilitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Langhorne P.
        • Bernhardt J.
        • Kwakkel G.
        Stroke rehabilitation.
        Lancet. 2011; 377: 1693-1702
        • Langhorne P.
        • Coupar F.
        • Pollock A.
        Motor recovery after stroke: a systematic review.
        Lancet Neurol. 2009; 8: 741-754
        • Veerbeek J.M.
        • van Wegen E.
        • van Peppen R.
        • et al.
        What is the evidence for physical therapy poststroke? A systematic review and meta-analysis.
        PLoS One. 2014; 9e87987
        • Pollock A.
        • Farmer S.E.
        • Brady M.C.
        • et al.
        Interventions for improving upper limb function after stroke.
        Cochrane Database Syst Rev. 2014; : Cd010820
        • Lohse K.R.
        • Lang C.E.
        • Boyd L.A.
        Is more better? Using metadata to explore dose-response relationships in stroke rehabilitation.
        Stroke. 2014; 45: 2053-2058
        • Cooke E.V.
        • Mares K.
        • Clark A.
        • Tallis R.C.
        • Pomeroy V.M.
        The effects of increased dose of exercise-based therapies to enhance motor recovery after stroke: a systematic review and meta-analysis.
        BMC Med. 2010; 8: 60
        • Schneider E.J.
        • Lannin N.A.
        • Ada L.
        • Schmidt J.
        Increasing the amount of usual rehabilitation improves activity after stroke: a systematic review.
        J Physiother. 2016; 62: 182-187
        • Chang K.H.
        • Chen H.C.
        • Lin Y.
        • Chen S.C.
        • Chiou H.Y.
        • Liou T.H.
        Developing an ICF core set for post-stroke disability assessment and verification in Taiwan: a preliminary study.
        Disabil Rehabil. 2012; 34: 1254-1261
        • Kwakkel G.
        • Kollen B.
        • Twisk J.
        Impact of time on improvement of outcome after stroke.
        Stroke. 2006; 37: 2348-2353
        • Coupar F.
        • Pollock A.
        • van Wijck F.
        • Morris J.
        • Langhorne P.
        Simultaneous bilateral training for improving arm function after stroke.
        Cochrane Database Syst Rev. 2010; : Cd006432
        • Mehrholz J.
        • Thomas S.
        • Elsner B.
        Treadmill training and body weight support for walking after stroke.
        Cochrane Database Syst Rev. 2017; 8: Cd002840
        • Vloothuis J.D.
        • Mulder M.
        • Veerbeek J.M.
        • et al.
        Caregiver-mediated exercises for improving outcomes after stroke.
        Cochrane Database Syst Rev. 2016; 12: Cd011058
        • Coupar F.
        • Pollock A.
        • Legg L.A.
        • Sackley C.
        • van Vliet P.
        Home-based therapy programmes for upper limb functional recovery following stroke.
        Cochrane Database Syst Rev. 2012; : Cd006755
        • Corbetta D.
        • Sirtori V.
        • Castellini G.
        • Moja L.
        • Gatti R.
        Constraint-induced movement therapy for upper extremities in people with stroke.
        Cochrane Database Syst Rev. 2015; : Cd004433
        • Woodford H.
        • Price C.
        EMG biofeedback for the recovery of motor function after stroke.
        Cochrane Database Syst Rev. 2007; : Cd004585
        • Pomeroy V.M.
        • King L.
        • Pollock A.
        • Baily-Hallam A.
        • Langhorne P.
        Electrostimulation for promoting recovery of movement or functional ability after stroke.
        Cochrane Database Syst Rev. 2006; : Cd003241
        • Barclay-Goddard R.
        • Stevenson T.
        • Poluha W.
        • Moffatt M.E.
        • Taback S.P.
        Force platform feedback for standing balance training after stroke.
        Cochrane Database Syst Rev. 2004; : Cd004129
        • Barclay-Goddard R.E.
        • Stevenson T.J.
        • Poluha W.
        • Thalman L.
        Mental practice for treating upper extremity deficits in individuals with hemiparesis after stroke.
        Cochrane Database Syst Rev. 2011; : Cd005950
        • Thieme H.
        • Mehrholz J.
        • Pohl M.
        • Behrens J.
        • Dohle C.
        Mirror therapy for improving motor function after stroke.
        Cochrane Database Syst Rev. 2012; : Cd008449
        • Pollock A.
        • Baer G.
        • Campbell P.
        • et al.
        Physical rehabilitation approaches for the recovery of function and mobility following stroke.
        Cochrane Database Syst Rev. 2014; : Cd001920
        • Legg L.A.
        • Drummond A.E.
        • Langhorne P.
        Occupational therapy for patients with problems in activities of daily living after stroke.
        Cochrane Database Syst Rev. 2006; : Cd003585
        • Pollock A.
        • Gray C.
        • Culham E.
        • Durward B.R.
        • Langhorne P.
        Interventions for improving sit-to-stand ability following stroke.
        Cochrane Database Syst Rev. 2014; : Cd007232
        • Magee W.L.
        • Clark I.
        • Tamplin J.
        • Bradt J.
        Music interventions for acquired brain injury.
        Cochrane Database Syst Rev. 2017; 1: Cd006787
        • Mehrholz J.
        • Pohl M.
        • Platz T.
        • Kugler J.
        • Elsner B.
        Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke.
        Cochrane Database Syst Rev. 2015; : Cd006876
        • Mehrholz J.
        • Thomas S.
        • Werner C.
        • Kugler J.
        • Pohl M.
        • Elsner B.
        Electromechanical-assisted training for walking after stroke.
        Cochrane Database Syst Rev. 2017; 5: Cd006185
        • French B.
        • Thomas L.H.
        • Coupe J.
        • et al.
        Repetitive task training for improving functional ability after stroke.
        Cochrane Database Syst Rev. 2016; 11: Cd006073
        • Laver K.E.
        • Lange B.
        • George S.
        • Deutsch J.E.
        • Saposnik G.
        • Crotty M.
        Virtual reality for stroke rehabilitation.
        Cochrane Database Syst Rev. 2017; 11: Cd008349
        • Kwakkel G.
        • Veerbeek J.M.
        • van Wegen E.E.
        • Wolf S.L.
        Constraint-induced movement therapy after stroke.
        Lancet Neurol. 2015; 14: 224-234
        • Etoom M.
        • Hawamdeh M.
        • Hawamdeh Z.
        • et al.
        Constraint-induced movement therapy as a rehabilitation intervention for upper extremity in stroke patients: systematic review and meta-analysis.
        Int J Rehabil Res. 2016; 39: 197-210
        • Plummer P.
        • Eskes G.
        • Wallace S.
        • et al.
        Cognitive-motor interference during functional mobility after stroke: state of the science and implications for future research.
        Arch Phys Med Rehabil. 2013; 94: 2565-2574.e6
        • Wang X.Q.
        • Pi Y.L.
        • Chen B.L.
        • et al.
        Cognitive motor interference for gait and balance in stroke: a systematic review and meta-analysis.
        Eur J Neurol. 2015; 22: 555-e37
        • Ghai S.
        • Ghai I.
        • Effenberg A.O.
        Effects of dual tasks and dual-task training on postural stability: a systematic review and meta-analysis.
        Clin Interv Aging. 2017; 12: 557-577
        • Stanton R.
        • Ada L.
        • Dean C.M.
        • Preston E.
        Biofeedback improves performance in lower limb activities more than usual therapy in people following stroke: a systematic review.
        J Physiother. 2017; 63: 11-16
        • Howlett O.A.
        • Lannin N.A.
        • Ada L.
        • McKinstry C.
        Functional electrical stimulation improves activity after stroke: a systematic review with meta-analysis.
        Arch Phys Med Rehabil. 2015; 96: 934-943
        • Laufer Y.
        • Elboim-Gabyzon M.
        Does sensory transcutaneous electrical stimulation enhance motor recovery following a stroke? A systematic review.
        Neurorehabil Neural Repair. 2011; 25: 799-809
        • Kho A.Y.
        • Liu K.P.
        • Chung R.C.
        Meta-analysis on the effect of mental imagery on motor recovery of the hemiplegic upper extremity function.
        Aust Occup Ther J. 2014; 61: 38-48
        • Li R.Q.
        • Li Z.M.
        • Tan J.Y.
        • Chen G.L.
        • Lin W.Y.
        Effects of motor imagery on walking function and balance in patients after stroke: A quantitative synthesis of randomized controlled trials.
        Complement Ther Clin Pract. 2017; 28: 75-84
        • Tong Y.
        • Pendy Jr., J.T.
        • Li W.A.
        • et al.
        Motor imagery-based rehabilitation: potential neural correlates and clinical application for functional recovery of motor deficits after stroke.
        Aging Dis. 2017; 8: 364-371
        • Perez-Cruzado D.
        • Merchan-Baeza J.A.
        • Gonzalez-Sanchez M.
        • Cuesta-Vargas A.I.
        Systematic review of mirror therapy compared with conventional rehabilitation in upper extremity function in stroke survivors.
        Aust Occup Ther J. 2017; 64: 91-112
        • Deconinck F.J.
        • Smorenburg A.R.
        • Benham A.
        • Ledebt A.
        • Feltham M.G.
        • Savelsbergh G.J.
        Reflections on mirror therapy: a systematic review of the effect of mirror visual feedback on the brain.
        Neurorehabil Neural Repair. 2015; 29: 349-361
        • Resquin F.
        • Cuesta Gomez A.
        • Gonzalez-Vargas J.
        • et al.
        Hybrid robotic systems for upper limb rehabilitation after stroke: a review.
        Med Eng Phys. 2016; 38: 1279-1288
        • Veerbeek J.M.
        • Langbroek-Amersfoort A.C.
        • van Wegen E.E.
        • Meskers C.G.
        • Kwakkel G.
        Effects of robot-assisted therapy for the upper limb after stroke.
        Neurorehabil Neural Repair. 2017; 31: 107-121
        • Bertani R.
        • Melegari C.
        • De Cola M.C.
        • Bramanti A.
        • Bramanti P.
        • Calabro R.S.
        Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis.
        Neurol Sci. 2017; 38: 1561-1569
        • Zhang X.
        • Yue Z.
        Robotics in Lower-Limb Rehabilitation after Stroke.
        Behav Neurol. 2017; 2017: 3731802
        • Ada L.
        • Dorsch S.
        • Canning C.G.
        Strengthening interventions increase strength and improve activity after stroke: a systematic review.
        Aust J Physiother. 2006; 52: 241-248
        • Harris J.E.
        • Eng J.J.
        Strength training improves upper-limb function in individuals with stroke: a meta-analysis.
        Stroke. 2010; 41: 136-140
        • Yang X.
        • Wang P.
        • Liu C.
        • He C.
        • Reinhardt J.D.
        The effect of whole body vibration on balance, gait performance and mobility in people with stroke: a systematic review and meta-analysis.
        Clin Rehabil. 2015; 29: 627-638
        • van Delden A.E.
        • Peper C.E.
        • Beek P.J.
        • Kwakkel G.
        Unilateral versus bilateral upper limb exercise therapy after stroke: a systematic review.
        J Rehabil Med. 2012; 44: 106-117
        • Wattchow K.A.
        • McDonnell M.N.
        • Hillier S.L.
        Rehabilitation interventions for upper limb function in the first four weeks following stroke: a systematic review and meta-analysis of the evidence.
        Arch Phys Med Rehabil. 2018; 99: 367-382
        • de Morton N.A.
        The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study.
        Aust J Physiother. 2009; 55: 129-133
        • Lang C.E.
        • Lohse K.R.
        • Birkenmeier R.L.
        Dose and timing in neurorehabilitation: prescribing motor therapy after stroke.
        Curr Opin Neurol. 2015; 28: 549-555
        • Marquez-Chin C.
        • Bagher S.
        • Zivanovic V.
        • Popovic M.R.
        Functional electrical stimulation therapy for severe hemiplegia: randomized control trial revisited.
        Can J Occup Ther. 2017; 84: 87-97
        • Kwakkel G.
        • Winters C.
        • van Wegen E.E.
        • et al.
        Effects of unilateral upper limb training in two distinct prognostic groups early after stroke: the EXPLICIT-stroke randomized clinical trial.
        Neurorehabil Neural Repair. 2016; 30: 804-816
        • Morris J.H.
        • van Wijck F.
        • Joice S.
        • Ogston S.A.
        • Cole I.
        • MacWalter R.S.
        A comparison of bilateral and unilateral upper-limb task training in early poststroke rehabilitation: a randomized controlled trial.
        Arch Phys Med Rehabil. 2008; 89: 1237-1245
        • van Delden A.L.
        • Peper C.L.
        • Nienhuys K.N.
        • Zijp N.I.
        • Beek P.J.
        • Kwakkel G.
        Unilateral versus bilateral upper limb training after stroke. the Upper Limb Training After Stroke clinical trial.
        Stroke. 2013; 44: 2613-2616
        • Brunner I.C.
        • Skouen J.S.
        • Strand L.I.
        Is modified constraint-induced movement therapy more effective than bimanual training in improving arm motor function in the subacute phase post stroke? A randomized controlled trial.
        Clin Rehabil. 2012; 26: 1078-1086
        • Ozdemir F.
        • Birtane M.
        • Tabatabaei R.
        • Kokino S.
        • Ekuklu G.
        Comparing stroke rehabilitation outcomes between acute in-patient and non-intense home settings.
        Arch Phys Med Rehabil. 2001; 82: 1375-1379
        • Ploughman M.
        • Corbett D.
        Can forced-use therapy be clinically applied after stroke? An exploratory randomized controlled trial.
        Arch Phys Med Rehabil. 2004; 85: 1414-1423
        • Hammer A.M.
        • Lindmark B.
        Effects of forced use on arm function in the subacute phase after stroke: a randomized, clinical pilot study.
        Phys Ther. 2009; 89: 526-539
        • Boake C.
        • Noser E.A.
        • Ro T.
        • et al.
        Constraint-induced movement therapy during early stroke rehabilitation.
        Neurorehabil Neural Repair. 2007; 21: 14-24
        • Dromerick A.W.
        • Edwards D.F.
        • Hahn M.
        • Dromerick A.W.
        • Edwards D.F.
        • Hahn M.
        Does the application of constraint-induced movement therapy during acute rehabilitation reduce arm impairment after ischemic stroke?.
        Stroke. 2000; 31: 2984-2988
        • Dromerick A.W.
        • Lang C.E.
        • Birkenmeier R.L.
        • et al.
        Very early constraint-induced movement during stroke rehabilitation (VECTORS): a single-center RCT.
        Neurology. 2009; 73: 195-201
        • Liu K.P.
        • Balderi K.
        • Leung T.L.
        • et al.
        A randomized controlled trial of self-regulated modified constraint-induced movement therapy in sub-acute stroke patients.
        Eur J Neurol. 2016; 23: 1351-1360
        • Myint J.M.
        • Yuen G.F.
        • Yu T.K.
        • et al.
        A study of constraint-induced movement therapy in subacute stroke patients in Hong Kong.
        Clin Rehabil. 2008; 22: 112-124
        • Singh P.
        • Pradhan B.
        Study to assess the effectiveness of modified constraint-induced movement therapy in stroke subjects: a randomized controlled trial.
        Ann Indian Acad Neurol. 2013; 16: 180-184
        • Stock R.
        • Thrane G.
        • Anke A.
        • Gjone R.
        • Askim T.
        Early versus late-applied constraint-induced movement therapy: a multisite, randomized controlled trial with a 12-month follow-up.
        Physiother Res Int. 2018; 23
        • Yu C.
        • Wang W.
        • Zhang Y.
        • et al.
        The effects of modified constraint-induced movement therapy in acute subcortical cerebral infarction.
        Front Hum Neurosci. 2017; 11: 265
        • El-Helow M.R.
        • Zamzam M.L.
        • Fathalla M.M.
        • et al.
        Efficacy of modified constraint-induced movement therapy in acute stroke.
        Eur J Phys Rehabil Med. 2015; 51: 371-379
        • Thrane G.
        • Askim T.
        • Stock R.
        • et al.
        Efficacy of constraint-induced movement therapy in early stroke rehabilitation: a randomized controlled multisite trial.
        Neurorehabil Neural Repair. 2015; 29: 517-525
        • Seok H.
        • Lee S.Y.
        • Kim J.
        • Yeo J.
        • Kang H.
        Can short-term constraint-induced movement therapy combined with visual biofeedback training improve hemiplegic upper limb function of subacute stroke patients?.
        Ann Rehabil Med. 2016; 40: 998-1009
        • Armagan O.
        • Tascioglu F.
        • Oner C.
        Electromyographic biofeedback in the treatment of the hemiplegic hand: a placebo-controlled study.
        Am J Phys Med Rehabil. 2003; 82: 856-861
        • Crow J.L.
        • Lincoln N.B.
        • Nouri F.M.
        • de Weerdt W.
        The effectiveness of EMG biofeedback in the treatment of arm function after stroke.
        Int Disabil Stud. 1989; 11: 155-160
        • Hemmen B.
        • Seelen H.A.
        Effects of movement imagery and electromyography-triggered feedback on arm hand function in stroke patients in the subacute phase.
        Clin Rehabil. 2007; 21: 587-594
        • Chae J.
        • Bethoux F.
        • Bohinc T.
        • Dobos L.
        • Davis T.
        • Friedl A.
        Neuromuscular stimulation for upper extremity motor and functional recovery in acute hemiplegia.
        Stroke. 1998; 29: 975-979
        • Dorsch S.
        • Ada L.
        • Canning C.G.
        EMG-triggered electrical stimulation is a feasible intervention to apply to multiple arm muscles in people early after stroke, but does not improve strength and activity more than usual therapy: a randomized feasibility trial.
        Clin Rehabil. 2014; 28: 482-490
        • Heckmann J.
        • Mokrusch T.
        • Krockel A.
        • Warnke S.
        • von Stockert W.T.
        • Neundorfer B.
        EMG-triggered electrical muscle stimulation in the treatment of central hemiparesis after a stroke.
        Eur J Phys Rehabil Med. 1997; 7: 138-141
        • Hsu S.S.
        • Hu M.H.
        • Wang Y.H.
        • Yip P.K.
        • Chiu J.W.
        • Hsieh C.L.
        Dose-response relation between neuromuscular electrical stimulation and upper-extremity function in patients with stroke.
        Stroke. 2010; 41: 821-824
        • Lin Z.
        • Yan T.
        Long-term effectiveness of neuromuscular electrical stimulation for promoting motor recovery of the upper extremity after stroke.
        J Rehabil Med. 2011; 43: 506-510
        • Powell J.P.A.
        • Granat M.
        • Cameron M.
        • Stott D.J.
        Electrical stimulation of wrist extensors in poststroke hemiplegia.
        Stroke. 1999; 30: 1384-1389
        • Rosewilliam S.
        • Malhotra S.
        • Roffe C.
        • Jones P.
        • Pandyan A.D.
        Can surface neuromuscular electrical stimulation of the wrist and hand combined with routine therapy facilitate recovery of arm function in patients with stroke?.
        Arch Phys Med Rehabil. 2012; 93 (.e1): 1715-1721
        • Shindo K.
        • Fujiwara T.
        • Hara J.
        • et al.
        Effectiveness of hybrid assistive neuromuscular dynamic stimulation therapy in patients with subacute stroke: a randomized controlled pilot trial.
        Neurorehabil Neural Repair. 2011; 25: 830-837
        • Wilson R.D.
        • Page S.J.
        • Delahanty M.
        • et al.
        Upper-limb recovery after stroke: a randomized controlled trial comparing EMG-triggered, cyclic, and sensory electrical stimulation.
        Neurorehabil Neural Repair. 2016; 30: 978-987
        • Yozbatiran N.
        • Donmez B.
        • Kayak N.
        • Bozan O.
        Electrical stimulation of wrist and fingers for sensory and functional recovery in acute hemiplegia.
        Clin Rehabil. 2006; 20: 4-11
        • Conforto A.B.
        • Ferreiro K.N.
        • Tomasi C.
        • et al.
        Effects of somatosensory stimulation on motor function after subacute stroke.
        Neurorehabil Neural Repair. 2010; 24: 263-272
        • Miyasaka H.
        • Orand A.
        • Ohnishi H.
        • Tanino G.
        • Takeda K.
        • Sonoda S.
        Ability of electrical stimulation therapy to improve the effectiveness of robotic training for paretic upper limbs in patients with stroke.
        Med Eng Phys. 2016; 38: 1172-1175
        • Ietswaart M.
        • Johnston M.
        • Dijkerman H.C.
        • et al.
        Mental practice with motor imagery in stroke recovery: randomized controlled trial of efficacy.
        Brain. 2011; 134: 1373-1386
        • Riccio I.
        • Iolascon G.
        • Barillari M.R.
        • Gimigliano R.
        • Gimigliano F.
        Mental practice is effective in upper limb recovery after stroke: a randomized single-blind cross-over study.
        Eur J Phys Rehabil Med. 2010; 46: 19-25
        • Liu H.
        • Song L.P.
        • Zhang T.
        Mental practice combined with physical practice to enhance hand recovery in stroke patients.
        Behav Neurol. 2014; 2014: 876416
        • Braun S.M.
        • Beurskens A.J.
        • Kleynen M.
        • Oudelaar B.
        • Schols J.M.
        • Wade D.T.
        A multicenter randomized controlled trial to compare subacute 'treatment as usual' with and without mental practice among persons with stroke in Dutch nursing homes.
        J Am Med Dir Assoc. 2012; 13: 85.e1-85.e7
        • Liu K.P.
        Use of mental imagery to improve task generalisation after a stroke.
        Hong Kong Med J. 2009; 15: 37-41
        • Invernizzi M.
        • Negrini S.
        • Carda S.
        • Lanzotti L.
        • Cisari C.
        • Baricich A.
        The value of adding mirror therapy for upper limb motor recovery of subacute stroke patients: a randomized controlled trial.
        Eur J Phys Rehabil Med. 2013; 49: 311-317
        • Lee M.M.
        • Cho H.Y.
        • Song C.H.
        The mirror therapy program enhances upper-limb motor recovery and motor function in acute stroke patients.
        Am J Phys Med Rehabil. 2012; 91: 689-696
        • Gurbuz N.
        • Afsar S.I.
        • Ayas S.
        • Cosar S.N.
        Effect of mirror therapy on upper extremity motor function in stroke patients: a randomized controlled trial.
        J Phys Ther Sci. 2016; 28: 2501-2506
        • Radajewska A.
        • Opara J.
        • Bilinski G.
        • et al.
        Effectiveness of mirror therapy for subacute stroke in relation to chosen factors.
        Rehabil Nurs. 2017; 42: 223-229
        • Samuelkamaleshkumar S.
        • Reethajanetsureka S.
        • Pauljebaraj P.
        • Benshamir B.
        • Padankatti S.M.
        • David J.A.
        Mirror therapy enhances motor performance in the paretic upper limb after stroke: a pilot randomized controlled trial.
        Arch Phys Med Rehabil. 2014; 95: 2000-2005
        • Tyson S.
        • Wilkinson J.
        • Thomas N.
        • et al.
        Phase II pragmatic randomized controlled trial of patient-led therapies (mirror therapy and lower-limb exercises) during inpatient stroke rehabilitation.
        Neurorehabil Neural Repair. 2015; 29: 818-826
        • Thieme H.
        • Bayn M.
        • Wurg M.
        • Zange C.
        • Pohl M.
        • Behrens J.
        Mirror therapy for patients with severe arm paresis after stroke - a randomized controlled trial.
        Clin Rehabil. 2013; 27: 314-324
        • Dohle C.
        • Pullen J.
        • Nakaten A.
        • Kust J.
        • Rietz C.
        • Karbe H.
        Mirror therapy promotes recovery from severe hemiparesis: a randomized controlled trial.
        Neurorehabil Neural Repair. 2009; 23: 209-217
        • Kim H.
        • Lee G.
        • Song C.
        Effect of functional electrical stimulation with mirror therapy on upper extremity motor function in poststroke patients.
        J Stroke Cerebrovasc Dis. 2014; 23: 655-661
        • Schick T.
        • Schlake H.P.
        • Kallusky J.
        • et al.
        Synergy effects of combined multichannel EMG-triggered electrical stimulation and mirror therapy in subacute stroke patients with severe or very severe arm/hand paresis.
        Restor Neurol Neurosci. 2017;
        • Lim K.B.
        • Lee H.J.
        • Yoo J.
        • Yun H.J.
        • Hwang H.J.
        Efficacy of mirror therapy containing functional tasks in poststroke patients.
        Ann Rehabil Med. 2016; 40: 629-636
        • Donaldson C.
        • Tallis R.
        • Miller S.
        • Sunderland A.
        • Lemon R.
        • Pomeroy V.
        Effects of conventional physical therapy and functional strength training on upper limb motor recovery after stroke: a randomized phase II study.
        Neurorehabil Neural Repair. 2009; 23: 389-397
        • Han C.
        • Wang Q.
        • Meng P.P.
        • Qi M.Z.
        Effects of intensity of arm training on hemiplegic upper extremity motor recovery in stroke patients: a randomized controlled trial.
        Clin Rehabil. 2013; 27: 75-81
        • Harris J.E.
        • Eng J.J.
        • Miller W.C.
        • Dawson A.S.
        A self-administered Graded Repetitive Arm Supplementary Program (GRASP) improves arm function during inpatient stroke rehabilitation: a multi-site randomized controlled trial.
        Stroke. 2009; 40: 2123-2128
        • Kong K.H.
        • Loh Y.J.
        • Thia E.
        • et al.
        Efficacy of a virtual reality commercial gaming device in upper limb recovery after stroke: a randomized, controlled study.
        Top Stroke Rehabil. 2016; 23: 333-340
        • Kwakkel G.
        • Wagenaar R.C.
        • Twisk J.W.
        • Lankhorst G.J.
        • Koetsier J.C.
        Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomised trial.
        Lancet. 1999; 354: 191-196
        • Glasgow Augmented Physiotherapy Study (GAPS) Group
        Can augmented physiotherapy input enhance recovery of mobility after stroke? A randomized controlled trial.
        Clin Rehabil. 2004; 18: 529-537
        • Yelnik A.P.
        • Quintaine V.
        • Andriantsifanetra C.
        • et al.
        AMOBES (Active Mobility Very Early After Stroke): a randomized controlled trial.
        Stroke. 2017; 48: 400-405
        • Platz T.
        • van Kaick S.
        • Mehrholz J.
        • Leidner O.
        • Eickhof C.
        • Pohl M.
        Best conventional therapy versus modular impairment-oriented training for arm paresis after stroke: a single-blind, multicenter randomized controlled trial.
        Neurorehabil Neural Repair. 2009; 23: 706-716
        • Schneider S.
        • Schonle P.W.
        • Altenmuller E.
        • Munte T.F.
        Using musical instruments to improve motor skill recovery following a stroke.
        J Neurol. 2007; 254: 1339-1346
        • Schneider S.
        • Münte T.
        • Rodriguez-Fornells A.
        • Sailer M.
        • Altenmuller E.
        Music-supported training is more efficient than functional motor training for recovery of fine motor skills in stroke patients.
        Music Perception. 2010; 27: 271-280
        • Jun E.M.
        • Roh Y.H.
        • Kim M.J.
        The effect of music-movement therapy on physical and psychological states of stroke patients.
        J Clin Nurs. 2013; 22: 22-31
        • Masiero S.
        • Celia A.
        • Rosati G.
        • Armani M.
        Robotic-assisted rehabilitation of the upper limb after acute stroke.
        Arch Phys Med Rehabil. 2007; 88: 142-149
        • Fasoli S.E.
        • Krebs H.I.
        • Ferraro M.
        • Hogan N.
        • Volpe B.T.
        Does shorter rehabilitation limit potential recovery poststroke?.
        Neurorehabil Neural Repair. 2004; 18: 88-94
        • Masiero S.
        • Celia A.
        • Armani M.
        • Rosati G.
        A novel robot device in rehabilitation of post-stroke hemiplegic upper limbs.
        Aging Clin Exp Res. 2006; 18: 531-535
        • Aisen M.L.
        • Krebs H.I.
        • Hogan N.
        • McDowell F.
        • Volpe B.T.
        The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke.
        Arch Neurol. 1997; 54: 443-446
        • Volpe B.
        • Krebs H.
        • Hogan N.
        • Edelstein L.
        • Diels C.
        • Aisen M.
        A novel approach to stroke rehabilitation robot-aided sensorimotor stimulation.
        Neurology. 2000; 54: 1938-1944
        • Burgar C.G.
        • Lum P.S.
        • Scremin A.M.
        • et al.
        Robot-assisted upper-limb therapy in acute rehabilitation setting following stroke: Department of Veterans Affairs multisite clinical trial.
        J Rehabil Res Dev. 2011; 48: 445-458
        • Hesse S.
        • Heß A.
        • Werner C.C.
        • Kabbert N.
        • Buschfort R.
        Effect on arm function and cost of robot-assisted group therapy in subacute patients with stroke and a moderately to severely affected arm: a randomized controlled trial.
        Clin Rehabil. 2014; 28: 637-647
        • Hsieh Y.W.
        • Wu C.Y.
        • Wang W.E.
        • et al.
        Bilateral robotic priming before task-oriented approach in subacute stroke rehabilitation: a pilot randomized controlled trial.
        Clin Rehabil. 2017; 31: 225-233
        • Lee K.W.
        • Kim S.B.
        • Lee J.H.
        • Lee S.J.
        • Yoo S.W.
        Effect of upper extremity robot-assisted exercise on spasticity in stroke patients.
        Ann Rehabil Med. 2016; 40: 961-971
        • Masiero S.
        • Armani M.
        • Rosati G.
        Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: focused review and results of new randomized controlled trial.
        J Rehabil Res Dev. 2011; 48: 355-366
        • Rabadi M.
        • Galgano M.
        • Lynch D.
        • Akerman M.
        • Lesser M.
        • Volpe B.
        A pilot study of activity-based therapy in the arm motor recovery post stroke: a randomized controlled trial.
        Clin Rehabil. 2008; 22: 1071-1082
        • Sale P.
        • Franceschini M.
        • Mazzoleni S.
        • Palma E.
        • Agosti M.
        • Posteraro F.
        Effects of upper limb robot-assisted therapy on motor recovery in subacute stroke patients.
        J Neuroeng Rehabil. 2014; 11: 104
        • Takahashi K.
        • Domen K.
        • Sakamoto T.
        • et al.
        Efficacy of upper extremity robotic therapy in subacute poststroke hemiplegia: an exploratory randomized trial.
        Stroke. 2016; 47: 1385-1388
        • Wolf S.L.
        • Sahu K.
        • Bay R.C.
        • et al.
        The HAAPI (Home Arm Assistance Progression Initiative) Trial: a novel robotics delivery approach in stroke rehabilitation.
        Neurorehabil Neural Repair. 2015; 29: 958-968
        • Qian Q.
        • Hu X.
        • Lai Q.
        • Ng S.C.
        • Zheng Y.
        • Poon W.
        Early stroke rehabilitation of the upper limb assisted with an electromyography-driven neuromuscular electrical stimulation-robotic arm.
        Front Neurol. 2017; 8: 447
        • Winstein C.J.
        • Rose D.K.
        • Tan S.M.
        • Lewthwaite R.
        • Chui H.C.
        • Azen S.P.
        A randomized controlled comparison of upper-extremity rehabilitation strategies in acute stroke: a pilot study of immediate and long-term outcomes.
        Arch Phys Med Rehabil. 2004; 85: 620-628
        • Blennerhassett J.
        • Dite W.
        Additional task-related practice improves mobility and upper limb function early after stroke: a randomised controlled trial.
        Aust J Physiother. 2004; 50: 219-224
        • Hubbard I.J.
        • Carey L.M.
        • Budd T.W.
        • et al.
        A randomized controlled trial of the effect of early upper-limb training on stroke recovery and brain activation.
        Neurorehabil Neural Repair. 2015; 29: 703-713
        • Arya K.
        • Verma R.
        • Garg R.
        • Sharma V.
        • Agarwal M.
        • Aggarwal G.
        Meaningful task-specific training (MTST) for stroke rehabilitation: a randomized controlled trial.
        Top Stroke Rehabil. 2012; 19: 193-211
        • Desrosiers J.
        • Bourbonnais D.
        • Corriveau H.
        • Gosselin S.
        • Bravo G.
        Effectiveness of unilateral and symmetrical bilateral task training for arm during the subacute phase after stroke: a randomized controlled trial.
        Clin Rehabil. 2005; 19: 581-593
        • Gelber D.A.
        • Josefczyk P.B.
        • Herrman D.
        • Good D.C.
        • Verhulst S.J.
        Comparison of two therapy approaches in the rehabilitation of the pure motor hemiparetic stroke patient.
        Neurorehabil Neural Repair. 1995; 9: 191-196
        • Langhammer B.
        • Stanghelle J.K.
        Bobath or motor relearning programme? A comparison of two different approaches of physiotherapy in stroke rehabilitation: a randomized controlled study.
        Clin Rehabil. 2000; 14: 361-369
        • van Vliet P.M.
        • Lincoln N.B.
        • Foxall A.
        Comparison of Bobath based and movement science based treatment for stroke: a randomised controlled trial.
        J Neurol Neurosurg Psychiatry. 2005; 76: 503-508
        • Winstein C.J.
        • Wolf S.L.
        • Dromerick A.W.
        • et al.
        Effect of a task-oriented rehabilitation program on upper extremity recovery following motor stroke: the ICARE randomized clinical trial.
        JAMA. 2016; 315: 571-581
        • Kwon J.-S.
        • Park M.-J.
        • Yoon I.-J.
        • Park S.-H.
        Effects of virtual reality on upper extremity function and activities of daily living performance in acute stroke: a double-blind randomized clinical trial.
        NeuroRehabilitation. 2012; 31: 379-385
        • Bower K.J.
        • Clark R.A.
        • McGinley J.L.
        • Martin C.L.
        • Miller K.J.
        Clinical feasibility of the Nintendo Wii for balance training post-stroke: a phase II randomized controlled trial in an inpatient setting.
        Clin Rehabil. 2014; 28: 912-923
        • Choi J.H.
        • Han E.Y.
        • Kim B.R.
        • et al.
        Effectiveness of commercial gaming-based virtual reality movement therapy on functional recovery of upper extremity in subacute stroke patients.
        Ann Rehabil Med. 2014; 38: 485-493
        • Adie K.
        • Schofield C.
        • Berrow M.
        • et al.
        Does the use of Nintendo Wii Sports(TM) improve arm function? Trial of Wii(TM) in Stroke: a randomized controlled trial and economics analysis.
        Clin Rehabil. 2017; 31: 173-185
        • Saposnik G.
        • Cohen L.G.
        • Mamdani M.
        • et al.
        Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial.
        Lancet Neurol. 2016; 15: 1019-1027
        • Saposnik G.
        • Teasell R.
        • Mamdani M.
        • et al.
        Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation.
        Stroke. 2010; 41: 1477-1484
        • Prange G.B.
        • Kottink A.I.
        • Buurke J.H.
        • et al.
        The effect of arm support combined with rehabilitation games on upper-extremity function in subacute stroke: a randomized controlled trial.
        Neurorehabil Neural Repair. 2015; 29: 174-182
        • Duncan P.W.
        • Sullivan K.J.
        • Behrman A.L.
        • et al.
        Body-weight–supported treadmill rehabilitation after stroke.
        N Engl J Med. 2011; 364: 2026-2036
        • Mackay-Lyons M.
        • McDonald A.
        • Matheson J.
        • Eskes G.
        • Klus M.A.
        Dual effects of body-weight supported treadmill training on cardiovascular fitness and walking ability early after stroke: a randomized controlled trial.
        Neurorehabil Neural Repair. 2013; 27: 644-653
        • Mao Y.R.
        • Lo W.L.
        • Lin Q.
        • et al.
        The effect of body weight support treadmill training on gait recovery, proximal lower limb motor pattern, and balance in patients with subacute stroke.
        Biomed Res Int. 2015; 2015: 175719
        • Nilsson L.
        • Carlsson J.
        • Danielsson A.
        • et al.
        Walking training of patients with hemiparesis at an early stage after stroke: a comparison of walking training on a treadmill with body weight support and walking training on the ground.
        Clin Rehabil. 2001; 15: 515-527
        • Galvin R.
        • Cusack T.
        • O'Grady E.
        • Murphy T.B.
        • Stokes E.
        Family-mediated exercise intervention (FAME): evaluation of a novel form of exercise delivery after stroke.
        Stroke. 2011; 42: 681-686
        • van den Berg M.
        • Crotty M.P.
        • Liu E.
        • Killington M.
        • Kwakkel G.P.
        • van Wegen E.
        Early supported discharge by caregiver-mediated exercises and e-health support after stroke: a proof-of-concept trial.
        Stroke. 2016; 47: 1885-1892
        • Choi J.H.
        • Kim B.R.
        • Han E.Y.
        • Kim S.M.
        The effect of dual-task training on balance and cognition in patients with subacute post-stroke.
        Ann Rehabil Med. 2015; 39: 81-90
        • Wang Y.H.
        • Meng F.
        • Zhang Y.
        • Xu M.Y.
        • Yue S.W.
        Full-movement neuromuscular electrical stimulation improves plantar flexor spasticity and ankle active dorsiflexion in stroke patients: a randomized controlled study.
        Clin Rehabil. 2016; 30: 577-586
        • Winchester P.
        • Montgomery J.
        • Bowman B.
        • Hislop H.
        Effects of feedback stimulation training and cyclical electrical stimulation on knee extension in hemiparetic patients.
        Phys Ther. 1983; 63: 1096-1103
        • Yan T.
        • Hui-Chan C.W.
        • Li L.S.
        Functional electrical stimulation improves motor recovery of the lower extremity and walking ability of subjects with first acute stroke: a randomized placebo-controlled trial.
        Stroke. 2005; 36: 80-85
        • Ambrosini E.
        • Ferrante S.
        • Pedrocchi A.
        • Ferrigno G.
        • Molteni F.
        Cycling induced by electrical stimulation improves motor recovery in postacute hemiparetic patients: a randomized controlled trial.
        Stroke. 2011; 42: 1068-1073
        • Ferrante S.
        • Pedrocchi A.
        • Ferrigno G.
        • Molteni F.
        Cycling induced by functional electrical stimulation improves the muscular strength and the motor control of individuals with post-acute stroke. Europa Medicophysica-SIMFER 2007 Award Winner.
        Eur J Phys Rehabil Med. 2008; 44: 159-167
        • Yavuzer G.
        • Geler-Kulcu D.
        • Sonel-Tur B.
        • Kutlay S.
        • Ergin S.
        • Stam H.J.
        Neuromuscular electric stimulation effect on lower-extremity motor recovery and gait kinematics of patients with stroke: a randomized controlled trial.
        Arch Phys Med Rehabil. 2006; 87: 536-540
        • Lee H.J.
        • Cho K.H.
        • Lee W.H.
        The effects of body weight support treadmill training with power-assisted functional electrical stimulation on functional movement and gait in stroke patients.
        Am J Phys Med Rehabil. 2013; 92: 1051-1059
        • Bauer P.
        • Krewer C.
        • Golaszewski S.
        • Koenig E.
        • Muller F.
        Functional electrical stimulation-assisted active cycling--therapeutic effects in patients with hemiparesis from 7 days to 6 months after stroke: a randomized controlled pilot study.
        Arch Phys Med Rehabil. 2015; 96: 188-196
        • Macdonell R.A.
        • Triggs W.J.
        • Leikauskas J.
        • et al.
        Functional electrical stimulation to the affected lower limb and recovery after cerebral infarction.
        J Stroke Cerebrovasc Dis. 1994; 4: 155-160
        • Morone G.
        • Fusco A.
        • Di Capua P.
        • Coiro P.
        • Pratesi L.
        Walking training with foot drop stimulator controlled by a tilt sensor to improve walking outcomes: a randomized controlled pilot study in patients with stroke in subacute phase.
        Stroke Res Treat. 2012; 2012: 523564
        • Ng M.F.
        • Tong R.K.
        • Li L.S.
        A pilot study of randomized clinical controlled trial of gait training in subacute stroke patients with partial body-weight support electromechanical gait trainer and functional electrical stimulation.
        Stroke. 2008; 39: 154-160
        • Xu Q.
        • Guo F.
        • Salem H.M.A.
        • Chen H.
        • Huang X.
        Effects of mirror therapy combined with neuromuscular electrical stimulation on motor recovery of lower limbs and walking ability of patients with stroke: a randomized controlled study.
        Clin Rehabil. 2017; 31: 1583-1591
        • Yan T.
        • Hui-Chan C.W.
        Transcutaneous electrical stimulation on acupuncture points improves muscle function in subjects after acute stroke: a randomized controlled trial.
        J Rehabil Med. 2009; 41: 312-316
        • Yavuzer G.
        • Oken O.
        • Atay M.B.
        • Stam H.J.
        Effect of sensory-amplitude electric stimulation on motor recovery and gait kinematics after stroke: a randomized controlled study.
        Arch Phys Med Rehabil. 2007; 88: 710-714
        • Cooke E.V.
        • Tallis R.C.
        • Clark A.
        • Pomeroy V.M.
        Efficacy of functional strength training on restoration of lower-limb motor function early after stroke: phase I randomized controlled trial.
        Neurorehabil Neural Repair. 2010; 24: 88-96
        • Kerr A.
        • Clark A.
        • Cooke E.V.
        • Rowe P.
        • Pomeroy V.M.
        Functional strength training and movement performance therapy produce analogous improvement in sit-to-stand early after stroke: early-phase randomised controlled trial.
        Physiotherapy. 2017; 103: 259-265
        • Wang R.
        • Chen H.
        • Chen C.
        • Yang Y.
        Efficacy of Bobath versus orthopaedic approach on impairment and function at different motor recovery stages after stroke: a randomized controlled study.
        Clin Rehabil. 2005; 19: 155-164
        • Mohan U.
        • Babu S.K.
        • Kumar K.V.
        • Suresh B.V.
        • Misri Z.K.
        • Chakrapani M.
        Effectiveness of mirror therapy on lower extremity motor recovery, balance and mobility in patients with acute stroke: a randomized sham-controlled pilot trial.
        Ann Indian Acad Neurol. 2013; 16: 634-639
        • Sutbeyaz S.
        • Yavuzer G.
        • Sezer N.
        • Koseoglu B.F.
        Mirror therapy enhances lower-extremity motor recovery and motor functioning after stroke: a randomized controlled trial.
        Arch Phys Med Rehabil. 2007; 88: 555-559
        • Forrester L.W.
        • Roy A.
        • Krywonis A.
        • Kehs G.
        • Krebs H.I.
        • Macko R.F.
        Modular ankle robotics training in early subacute stroke: a randomized controlled pilot study.
        Neurorehabil Neural Repair. 2014; 28: 678-687
        • Chang W.H.
        • Kim M.S.
        • Huh J.P.
        • Lee P.K.
        • Kim Y.-H.
        Effects of robot-assisted gait training on cardiopulmonary fitness in subacute stroke patients: a randomized controlled study.
        Neurorehabil Neural Repair. 2012; 26: 318-324
        • Han E.Y.
        • Im S.H.
        • Kim B.R.
        • Seo M.J.
        • Kim M.O.
        Robot-assisted gait training improves brachial–ankle pulse wave velocity and peak aerobic capacity in subacute stroke patients with totally dependent ambulation: randomized controlled trial.
        Medicine. 2016; 95
        • Morone G.
        • Bragoni M.
        • Iosa M.
        • et al.
        Who may benefit from robotic-assisted gait training? A randomized clinical trial in patients with subacute stroke.
        Neurorehabil Neural Repair. 2011; 25: 636-644
        • Pohl M.
        • Werner C.
        • Holzgraefe M.
        • et al.
        Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS).
        Clin Rehabil. 2007; 21: 17-27
        • van Nunen M.P.
        • Gerrits K.H.
        • Konijnenbelt M.
        • Janssen T.W.
        • de Haan A.
        Recovery of walking ability using a robotic device in subacute stroke patients: a randomized controlled study.
        Disabil Rehabil Assist Technol. 2015; 10: 141-148
        • Watanabe H.
        • Tanaka N.
        • Inuta T.
        • Saitou H.
        • Yanagi H.
        Locomotion improvement using a hybrid assistive limb in recovery phase stroke patients: a randomized controlled pilot study.
        Arch Phys Med Rehabil. 2014; 95: 2006-2012
        • Kim C.Y.
        • Lee J.S.
        • Kim H.D.
        • Kim J.
        • Lee I.H.
        Lower extremity muscle activation and function in progressive task-oriented training on the supplementary tilt table during stepping-like movements in patients with acute stroke hemiparesis.
        J Electromyogr Kinesiol. 2015; 25: 522-530
        • McEwen D.
        • Taillon-Hobson A.
        • Bilodeau M.
        • Sveistrup H.
        • Finestone H.
        Virtual reality exercise improves mobility after stroke an inpatient randomized controlled trial.
        Stroke. 2014; 45: 1853-1855
        • Guo C.
        • Mi X.
        • Liu S.
        • et al.
        Whole body vibration training improves walking performance of stroke patients with knee hyperextension: a randomized controlled pilot study.
        CNS Neurol Disord Drug Targets. 2015; 14: 1110-1115
        • van Nes I.J.
        • Latour H.
        • Schils F.
        • Meijer R.
        • van Kuijk A.
        • Geurts A.C.
        Long-term effects of 6-week whole-body vibration on balance recovery and activities of daily living in the postacute phase of stroke: a randomized, controlled trial.
        Stroke. 2006; 37: 2331-2335