Advertisement

When Environment Meets Genetics: A Clinical Review of the Epigenetics of Pain, Psychological Factors, and Physical Activity

  • Andrea Polli
    Correspondence
    Corresponding author Andrea Polli, MSc, Rehabilitation Sciences and Physiotherapy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Brussels, Belgium.
    Affiliations
    Pain in Motion International Research Group, Brussels, Belgium

    Department of Physiotherapy, Human Physiology and Anatomy, Rehabilitation Sciences and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium

    Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, Leuven, Belgium
    Search for articles by this author
  • Kelly Ickmans
    Affiliations
    Pain in Motion International Research Group, Brussels, Belgium

    Department of Physiotherapy, Human Physiology and Anatomy, Rehabilitation Sciences and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium

    Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
    Search for articles by this author
  • Lode Godderis
    Affiliations
    Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, Leuven, Belgium

    External Service for Prevention and Protection at Work, IDEWE, Heverlee, Belgium
    Search for articles by this author
  • Jo Nijs
    Affiliations
    Pain in Motion International Research Group, Brussels, Belgium

    Department of Physiotherapy, Human Physiology and Anatomy, Rehabilitation Sciences and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium

    Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
    Search for articles by this author
Published:October 20, 2018DOI:https://doi.org/10.1016/j.apmr.2018.09.118

      Highlights

      • Epigenetics research is making substantial contributions to the elucidation of the intricate underlying mechanisms of chronic diseases and cancer development, allowing remarkable clinical applications and innovative treatments.
      • Many recent discoveries would suggest that future developments might have applications in rehabilitation.
      • Epigenetics might offer the exciting possibility of unraveling relevant underlying mechanisms involved in pain conditions and exercise responses, thus allowing researchers and clinicians to fill a gap in their explanatory abilities.
      • Researchers and clinicians in the field of rehabilitation should be attentive to this rapidly increasing and exciting field and consider combining clinical measures with more biological ones.

      Abstract

      Epigenetic mechanisms represent a link between the environment and gene function. Recent research shows how early life stress, inflammation, and physical activity can influence gene expression through epigenetic mechanisms. Epigenetic changes—such as DNA methylation and microRNA interference—can be measured in humans and might soon become important biological markers. Epigenetic marks can accompany clinical assessment to measure the effectiveness of various interventions, such as exercise therapy. In addition, epigenetics is improving the understanding of important underlying mechanisms related to the central nervous system, the opioidergic system, and stress responses. Epigenetics is closing a gap in our explanatory abilities and should be implemented to broaden the field of rehabilitation sciences, promote a mechanism-based clinical reasoning, and develop new treatments. In the present review, we focused on epigenetic mechanisms related to pain, psychological factors (such as fear and anxiety), and physical activity, translating relevant findings from these 3 different, yet related, areas of cardinal importance for clinicians.

      Keywords

      List of abbreviations:

      BDNF (brain-derived neurotrophic factor), CNS (central nervous system), HDAC (histone deacetylase), HPA (hypothalamic-pituitary-adrenal), miRNA (microRNA), ncRNA (noncoding RNA), NR3C1 (nuclear receptor subfamily 3 group C member 1), OPRM1 (μ-opioid receptor-1), TRPV1 (transient receptor potential vanilloid 1), TRPA1 (transient receptor potential ankyrin 1)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Archives of Physical Medicine and Rehabilitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Henikoff S.
        Epigenetics.
        Epigenetics. 2009; 2: 13
        • Zardo G.
        • Cimino G.
        • Nervi C.
        Epigenetic plasticity of chromatin in embryonic and hematopoietic stem/progenitor cells: therapeutic potential of cell reprogramming.
        Leukemia. 2008; 22: 1503-1518
        • Blomen V.A.
        • Boonstra J.
        Stable transmission of reversible modifications: maintenance of epigenetic information through the cell cycle.
        Cell Mol Life Sci. 2011; 68: 27-44
        • Holliday R.
        Epigenetics: a historical overview.
        Epigenetics. 2006; 1: 76-80
        • Egger G.
        • Liang G.
        • Aparicio A.
        • Jones P.A.
        Epigenetics in human disease and prospects for epigenetic therapy.
        Nature. 2004; 429: 457-463
        • Denk F.
        • McMahon S.B.
        Chronic pain: emerging evidence for the involvement of epigenetics.
        Neuron. 2012; 73: 435-444
        • Godderis L.
        • De Raedt K.
        • Tabish A.M.
        • et al.
        Epigenetic changes in lymphocytes of solvent-exposed individuals.
        Epigenomics. 2012; 4: 269-277
        • Pauwels S.
        • Duca R.C.
        • Devlieger R.
        • et al.
        Maternal methyl-group donor intake and global DNA (Hydroxy)methylation before and during pregnancy.
        Nutrients. 2016; 8
        • De Nys S.
        • Duca R.C.
        • Nawrot T.
        • et al.
        Temporal variability of global DNA methylation and hydroxymethylation in buccal cells of healthy adults: association with air pollution.
        Environ Int. 2018; 111: 301-308
        • Horsburgh S.
        • Robson-Ansley P.
        • Adams R.
        • Smith C.
        Exercise and inflammation-related epigenetic modifications: focus on DNA methylation.
        Exerc Immunol Rev. 2015; 21: 26-41
        • Denham J.
        • Marques F.Z.
        • O’Brien B.J.
        • Charchar F.J.
        Exercise: putting action into our epigenome.
        Sports Med. 2014; 44: 189-209
        • Wang B.
        • Zhong Y.
        • Zhao Z.
        • Miao Y.
        Epigenetic suppression of hippocampal BDNF mediates the memory deficiency induced by amyloid fibrils.
        Pharmacol Biochem Behav. 2014; 126: 83-89
        • Ikegame T.
        • Bundo M.
        • Murata Y.
        • Kasai K.
        • Kato T.
        • Iwamoto K.
        DNA methylation of the BDNF gene and its relevance to psychiatric disorders.
        J Hum Genet. 2013; 58: 434-438
        • Li B.E.
        • Ernst P.
        Two decades of leukemia oncoprotein epistasis: the MLL1 paradigm for epigenetic deregulation in leukemia.
        Exp Hematol. 2014; 42: 995-1012
        • Kulis M.
        • Esteller M.
        DNA methylation and cancer.
        Adv Genet. 2010; 70: 27-56
        • Jaenisch R.
        • Bird A.
        Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals.
        Nat Genet. 2003; 33: 245-254
        • Campos E.I.
        • Reinberg D.
        Histones: annotating chromatin.
        Annu Rev Genet. 2009; 43: 559-599
        • Bannister A.J.
        • Kouzarides T.
        Regulation of chromatin by histone modifications.
        Cell Res. 2011; 21: 381-395
        • Robertson K.D.
        DNA methylation and human disease.
        Nat Rev Genet. 2005; 6: 597-610
        • Godderis L.
        • Schouteden C.
        • Tabish A.
        • et al.
        Global methylation and hydroxymethylation in DNA from blood and saliva in healthy volunteers.
        Biomed Res Int. 2015; 2015: 845041
        • Richa R.
        • Sinha R.P.
        Hydroxymethylation of DNA: an epigenetic marker.
        EXCLI J. 2014; 13: 592-610
        • Yao B.
        • Christian K.M.
        • He C.
        • Jin P.
        • Ming G.
        • Song H.
        Epigenetic mechanisms in neurogenesis.
        Nat Rev Neurosci. 2016; 17: 537-549
        • Chuang J.C.
        • Jones P.A.
        Epigenetics and microRNAs.
        Pediatr Res. 2007; 61: 24-29
        • Han L.
        • Witmer P.D.
        • Casey E.
        • Valle D.
        • Sukumar S.
        DNA methylation regulates microRNA expression.
        Cancer Biol Ther. 2007; 6: 1284-1288
        • Bianchi M.
        • Renzini A.
        • Adamo S.
        • Moresi V.
        Coordinated actions of microRNAs with other epigenetic factors regulate skeletal muscle development and adaptation.
        Int J Mol Sci. 2017; 18
        • Nakayama T.
        • Yamashita M.
        Initiation and maintenance of Th2 cell identity.
        Curr Opin Immunol. 2008; 20: 265-271
        • Crepaldi L.
        • Riccio A.
        Chromatin learns to behave.
        Epigenetics. 2009; 4: 23-26
        • Rajasethupathy P.
        • Antonov I.
        • Sheridan R.
        • et al.
        A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity.
        Cell. 2012; 149: 693-707
        • Lubin F.D.
        • Roth T.L.
        • Sweatt J.D.
        Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory.
        J Neurosci. 2008; 28: 10576-10586
        • Abbott L.F.
        • Nelson S.B.
        Synaptic plasticity: taming the beast.
        Nat Neurosci. 2000; 3: 1178-1183
        • Leal G.
        • Afonso P.M.
        • Salazar I.L.
        • Duarte C.B.
        Regulation of hippocampal synaptic plasticity by BDNF.
        Brain Res. 2015; 1621: 82-101
        • Cortés-Mendoza J.
        • Díaz de León-Guerrero S.
        • Pedraza-Alva G.
        • Pérez-Martínez L.
        Shaping synaptic plasticity: the role of activity-mediated epigenetic regulation on gene transcription.
        Int J Dev Neurosci. 2013; 31: 359-369
        • Lubin F.D.
        Epigenetic gene regulation in the adult mammalian brain: multiple roles in memory formation.
        Neurobiol Learn Mem. 2011; 96: 68-78
        • Foulkes T.
        • Wood J.N.
        Pain genes.
        PLoS Genet. 2008; 4
        • Oertel B.
        • Lötsch J.
        Genetic mutations that prevent pain: implications for future pain medication.
        Pharmacogenomics. 2008; 9: 179-194
        • Tammimäki A.
        • Männistö P.T.
        Catechol-O-methyltransferase gene polymorphism and chronic human pain: a systematic review and meta-analysis.
        Pharmacogenet Genomics. 2012; 22: 673-691
        • Zubieta J.-K.
        • Heitzeg M.M.
        • Smith Y.R.
        • et al.
        COMT val158met genotype affects mu-opioid neurotransmitter responses to a pain stressor.
        Science. 2003; 299: 1240-1243
        • Bjorland S.
        • Moen A.
        • Schistad E.
        • Gjerstad J.
        • Røe C.
        Genes associated with persistent lumbar radicular pain; a systematic review.
        BMC Musculoskelet Disord. 2016; 17: 500
        • Tour J.
        • Lofgren M.
        • Mannerkorpi K.
        • et al.
        Gene-to-gene interactions regulate endogenous pain modulation in fibromyalgia patients and healthy controls-antagonistic effects between opioid and serotonin-related genes.
        Pain. 2017; 158: 1194-1203
        • Nilius B.
        • Appendino G.
        • Owsianik G.
        The transient receptor potential channel TRPA1: from gene to pathophysiology.
        Pflugers Arch. 2012; 464: 425-458
        • Ugarte G.D.
        • Diaz E.
        • Biscaia M.
        • Stehberg J.
        • Montecino M.
        • van Zundert B.
        Transcription of the pain-related TRPV1 gene requires RUNX1 and C/EBPβ factors.
        J Cell Physiol. 2013; 228: 860-870
        • Generaal E.
        • Milaneschi Y.
        • Jansen R.
        • Elzinga B.M.
        • Dekker J.
        • Penninx B.W.
        The brain-derived neurotrophic factor pathway, life stress, and chronic multi-site musculoskeletal pain.
        Mol Pain. 2016; 12
        • Buchheit T.
        • Van de Ven T.
        • Shaw A.
        Epigenetics and the transition from acute to chronic pain.
        Pain Med. 2012; 13: 1474-1490
        • Tajerian M.
        • Alvarado S.
        • Millecamps M.
        • et al.
        Peripheral nerve injury is associated with chronic, reversible changes in global DNA methylation in the mouse prefrontal cortex.
        PLoS One. 2013; 8e55259
        • Descalzi G.
        • Ikegami D.
        • Ushijima T.
        • Nestler E.J.
        • Zachariou V.
        • Narita M.
        Epigenetic mechanisms of chronic pain.
        Trends Neurosci. 2015; 38: 237-246
        • Leinders M.
        • Uceyler N.
        • Thomann A.
        • Sommer C.
        Aberrant microRNA expression in patients with painful peripheral neuropathies.
        J Neurol Sci. 2017; 380: 242-249
        • Zhou Q.
        • Yang L.
        • Larson S.
        • et al.
        Decreased miR-199 augments visceral pain in patients with IBS through translational upregulation of TRPV1.
        Gut. 2016; 65: 797-805
        • Chidambaran V.
        • Zhang X.
        • Martin L.J.
        • et al.
        DNA methylation at the mu-1 opioid receptor gene (OPRM1) promoter predicts preoperative, acute, and chronic postsurgical pain after spine fusion.
        Pharmgenomics Pers Med. 2017; 10: 157-168
        • de Andrade D.C.
        • Maschietto M.
        • Galhardoni R.
        • et al.
        Epigenetics insights into chronic pain: DNA hypomethylation in fibromyalgia-a controlled pilot-study.
        Pain. 2017; 158: 1473-1480
        • Menzies V.
        • Lyon D.E.
        • Archer K.J.
        • et al.
        Epigenetic alterations and an increased frequency of micronuclei in women with fibromyalgia.
        Nurs Res Pract. 2013; 2013: 795784
        • Livshits G.
        • Malkin I.
        • Freidin M.B.
        • et al.
        Genome-wide methylation analysis of a large population sample shows neurological pathways involvement in chronic widespread musculoskeletal pain.
        Pain. 2017; 158: 1053-1062
        • Bell J.T.
        • Loomis A.K.
        • Butcher L.M.
        • et al.
        Differential methylation of the TRPA1 promoter in pain sensitivity.
        Nat Commun. 2014; 5: 2978
        • McNamara C.R.
        • Mandel-Brehm J.
        • Bautista D.M.
        • et al.
        TRPA1 mediates formalin-induced pain.
        Proc Natl Acad Sci. 2007; 104: 13525-13530
        • Woolf C.J.
        Central sensitization: implications for the diagnosis and treatment of pain.
        Pain. 2011; 152: 2-15
        • Van Oosterwijck J.
        • Nijs J.
        • Meeus M.
        • Paul L.
        Evidence for central sensitization in chronic whiplash: a systematic literature review.
        Eur J Pain. 2013; 17: 299-312
        • Nijs J.
        • Meeus M.
        • van Oosterwijck J.
        • et al.
        In the mind or in the brain? Scientific evidence for central sensitisation in chronic fatigue syndrome.
        Eur J Clin Invest. 2012; 42: 203-212
        • Lluch E.
        • Torres R.
        • Nijs J.
        • Van Oosterwijck J.
        Evidence for central sensitization in patients with osteoarthritis pain: a systematic literature review.
        Eur J Pain. 2014; 18: 1367-1375
        • Nijs J.
        • Apeldoorn A.
        • Hallegraeff H.
        • et al.
        Low back pain: guidelines for the clinical classification of predominant neuropathic, nociceptive, or central sensitization pain.
        Pain Physician. 2015; 18: E333-E346
        • Sakai A.
        • Saitow F.
        • Miyake N.
        • Miyake K.
        • Shimada T.
        • Suzuki H.
        MiR-7a alleviates the maintenance of neuropathic pain through regulation of neuronal excitability.
        Brain. 2013; 136: 2738-2750
        • Matsushita Y.
        • Araki K.
        • Omotuyi O.I.
        • Mukae T.
        • Ueda H.
        HDAC inhibitors restore C-fibre sensitivity in experimental neuropathic pain model.
        Br J Pharmacol. 2013; 170: 991-998
        • Wan D.
        • Hou L.
        • Zhang X.
        • et al.
        DNA methylation of RAMP1 gene in migraine: an exploratory analysis.
        J Headache Pain. 2015; 16: 90
        • Iyengar S.
        • Ossipov M.H.
        • Johnson K.W.
        The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine.
        Pain. 2017; 158: 543-559
        • Fritz J.M.
        • George S.Z.
        Identifying psychosocial variables in patients with acute work-related low back pain: the importance of fear-avoidance beliefs.
        Phys Ther. 2002; 82: 973-983
        • Trost Z.
        • France C.R.
        • Thomas J.S.
        Pain-related fear and avoidance of physical exertion following delayed-onset muscle soreness.
        Pain. 2011; 152: 1540-1547
        • De Jong J.R.
        • Vlaeyen J.W.
        • Van Eijsden M.
        • Loo C.
        • Onghena P.
        Reduction of pain-related fear and increased function and participation in work-related upper extremity pain (WRUEP): effects of exposure in vivo.
        Pain. 2012; 153: 2109-2118
        • Bliokas V.V.
        • Cartmill T.K.
        • Nagy B.J.
        Does systematic graded exposure in vivo enhance outcomes in multidisciplinary chronic pain management groups?.
        Clin J Pain. 2007; 23: 361-374
        • Aparicio V.A.
        • Ortega F.B.
        • Carbonell-Baeza A.
        • Cuevas-Toro A.M.
        • Delgado-Fernández M.
        • Ruiz J.
        Anxiety, depression and fibromyalgia pain and severity.
        Behav Psychol. 2013; 21: 381-392
        • Chapman C.R.
        • Tuckett R.P.
        • Song C.W.
        Pain and stress in a systems perspective: reciprocal neural, endocrine, and immune interactions.
        J Pain. 2008; 9: 122-145
        • Rosenbloom B.N.
        • Katz J.
        • Chin K.Y.
        • et al.
        Predicting pain outcomes after traumatic musculoskeletal injury.
        Pain. 2016; 157: 1733-1743
        • Nijs J.
        • Lluch Girbes E.
        • Lundberg M.
        • Malfliet A.
        • Sterling M.
        Exercise therapy for chronic musculoskeletal pain: innovation by altering pain memories.
        Man Ther. 2015; 20: 216-220
        • Nijs J.
        • Van Houdenhove B.
        • Oostendorp R.A.
        Recognition of central sensitization in patients with musculoskeletal pain: application of pain neurophysiology in manual therapy practice.
        Man Ther. 2010; 15: 135-141
        • Baert I.A.
        • Lluch E.
        • Mulder T.
        • Nijs J.
        • Noten S.
        • Meeus M.
        Does pre-surgical central modulation of pain influence outcome after total knee replacement? A systematic review.
        Osteoarthritis Cartilage. 2016; 24: 213-223
        • Lluch Girbes E.
        • Duenas L.
        • Barbero M.
        • et al.
        Expanded distribution of pain as a sign of central sensitization in individuals with symptomatic knee osteoarthritis.
        Phys Ther. 2016; 96: 1196-1207
        • Levine S.
        Developmental determinants of sensitivity and resistance to stress.
        Psychoneuroendocrinology. 2005; 30: 939-946
        • Meaney M.J.
        • Szyf M.
        • Seckl J.R.
        Epigenetic mechanisms of perinatal programming of hypothalamic-pituitary-adrenal function and health.
        Trends Mol Med. 2007; 13: 269-277
        • Hoffmann A.
        • Spengler D.
        DNA memories of early social life.
        Neuroscience. 2014; 264: 64-75
        • Burke N.N.
        • Finn D.P.
        • McGuire B.E.
        • Roche M.
        Psychological stress in early life as a predisposing factor for the development of chronic pain: clinical and preclinical evidence and neurobiological mechanisms.
        J Neurosci Res. 2017; 95: 1257-1270
        • Nijs J.
        • Loggia M.L.
        • Polli A.
        • et al.
        Sleep disturbances and severe stress as glial activators: key targets for treating central sensitization in chronic pain patients?.
        Expert Opin Ther Targets. 2017; 21: 817-826
        • Russell G.M.
        • Henley D.E.
        • Leendertz J.
        • et al.
        Rapid glucocorticoid receptor-mediated inhibition of hypothalamic-pituitary-adrenal ultradian activity in healthy males.
        J Neurosci. 2010; 30: 6106-6115
        • Bakusic J.
        • Schaufeli W.
        • Claes S.
        • Godderis L.
        Stress, burnout and depression: a systematic review on DNA methylation mechanisms.
        J Psychosom Res. 2017; 92: 34-44
        • Mueller B.R.
        • Bale T.L.
        Sex-specific programming of offspring emotionality after stress early in pregnancy.
        J Neurosci. 2008; 28: 9055-9065
        • Zannas A.S.
        • West A.E.
        Epigenetics and the regulation of stress vulnerability and resilience.
        Neuroscience. 2014; 264: 157-170
        • Schouten M.
        • Aschrafi A.
        • Bielefeld P.
        • Doxakis E.
        • Fitzsimons C.P.
        MicroRNAs and the regulation of neuronal plasticity under stress conditions.
        Neuroscience. 2013; 241: 188-205
        • Oppermann U.
        Why is epigenetics important in understanding the pathogenesis of inflammatory musculoskeletal diseases?.
        Arthritis Res Ther. 2013; 15: 209
        • Baxter D.
        • McInnes I.B.
        • Kurowska-Stolarska M.
        Novel regulatory mechanisms in inflammatory arthritis: a role for microRNA.
        Immunol Cell Biol. 2012; 90: 288-292
        • Chen W.P.
        • Bao J.P.
        • Hu P.F.
        • Feng J.
        • Wu L.D.
        Alleviation of osteoarthritis by trichostatin A, a histone deacetylase inhibitor, in experimental osteoarthritis.
        Mol Biol Rep. 2010; 37: 3967-3972
        • Brown W.M.
        Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis.
        Br J Sports Med. 2015; 49: 1568-1578
        • Nitert M.D.
        • Dayeh T.
        • Volkov P.
        • et al.
        Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes.
        Diabetes. 2012; 61: 3322-3332
        • Barrès R.
        • Yan J.
        • Egan B.
        • et al.
        Acute exercise remodels promoter methylation in human skeletal muscle.
        Cell Metab. 2012; 15: 405-411
        • Seaborne R.A.
        • Strauss J.
        • Cocks M.
        • et al.
        Human skeletal muscle possesses an epigenetic memory of hypertrophy.
        Sci Rep. 2018; 8: 1898
        • Abel J.L.
        • Rissman E.F.
        Running-induced epigenetic and gene expression changes in the adolescent brain.
        Int J Dev Neurosci. 2013; 31: 382-390
        • Elsner V.R.
        • Lovatel G.A.
        • Bertoldi K.
        • et al.
        Effect of different exercise protocols on histone acetyltransferases and histone deacetylases activities in rat hippocampus.
        Neuroscience. 2011; 192: 580-587
        • Naugle K.M.
        • Fillingim R.B.
        • Riley J.L.
        A meta-analytic review of the hypoalgesic effects of exercise.
        J Pain. 2012; 13: 1139-1150
        • Ieraci A.
        • Mallei A.
        • Musazzi L.
        • Popoli M.
        Physical exercise and acute restraint stress differentially modulate hippocampal brain-derived neurotrophic factor transcripts and epigenetic mechanisms in mice.
        Hippocampus. 2015; 25: 1380-1392
        • Erickson K.I.
        • Miller D.L.
        • Roecklein K.A.
        The aging hippocampus: interactions between exercise, depression, and BDNF.
        Neuroscientist. 2012; 18: 82-97
        • Vaynman S.
        • Ying Z.
        • Gomez-Pinilla F.
        Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition.
        Eur J Neurosci. 2004; 20: 2580-2590
        • Nijs J.
        • Meeus M.
        • Versijpt J.
        • et al.
        Brain-derived neurotrophic factor as a driving force behind neuroplasticity in neuropathic and central sensitization pain: a new therapeutic target?.
        Expert Opin Ther Targets. 2015; 19: 565-576
        • Nugraha B.
        • Karst M.
        • Engeli S.
        • Gutenbrunner C.
        Brain-derived neurotrophic factor and exercise in fibromyalgia syndrome patients: a mini review.
        Rheumatol Int. 2012; 32: 2593-2599
        • Nijs J.
        • Kosek E.
        • Van Oosterwijck J.
        • Meeus M.
        Dysfunctional endogenous analgesia during exercise in patients with chronic pain: to exercise or not to exercise?.
        Pain Physician. 2012; 15: E205-E213
        • Pruunsild P.
        • Kazantseval A.
        • Aid T.
        • Palm K.
        • Timmusk T.
        Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters.
        Genomics. 2007; 90: 397-406
        • Ehlert T.
        • Simon P.
        • Moser D.A.
        Epigenetics in sports.
        Sports Med. 2013; 43: 93-110
        • Falkenberg K.J.
        • Johnstone R.W.
        Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders.
        Nat Rev Drug Discov. 2014; 13: 673-691
        • Mout R.
        • Ray M.
        • Lee Y.W.
        • Scaletti F.
        • Rotello V.M.
        In vivo delivery of CRISPR/Cas9 for therapeutic gene editing: progress and challenges.
        Bioconjug Chem. 2017; 28: 880-884
        • Nijs J.
        • Nees A.
        • Paul L.
        • et al.
        Altered immune response to exercise in patients with chronic fatigue syndrome/myalgic encephalomyelitis: a systematic literature review.
        Exerc Immunol Rev. 2014; 20: 94-116
        • Ploeger H.E.
        • Takken T.
        • De Greef M.H.
        • Timmons B.W.
        The effects of acute and chronic exercise on inflammatory markers in children and adults with a chronic inflammatory disease: a systematic review.
        Exerc Immunol Rev. 2009; 15: 6-41
        • Dobkin P.L.
        • Da Costa D.
        • Abrahamowicz M.
        • et al.
        Adherence during an individualized home based 12-week exercise program in women with fibromyalgia.
        J Rheumatol. 2006; 33: 333-341
        • Demmelmaier I.
        • Dufour A.B.
        • Nordgren B.
        • Opava C.H.
        Trajectories of physical activity over two years in persons with rheumatoid arthritis.
        Arthritis Care Res. 2016; 68: 1069-1077
        • Butow P.
        • Sharpe L.
        The impact of communication on adherence in pain management.
        Pain. 2013; 154: 101-107
        • Nijs J.
        • Paul L.
        • Wallman K.
        Chronic fatigue syndrome: an approach combining self-management with graded exercise to avoid exacerbations.
        J Rehabil Med. 2008; 40: 241-247
        • Bernardy K.
        • Klose P.
        • Busch A.J.
        • Choy E.H.
        • Häuser W.
        Cognitive behavioural therapies for fibromyalgia.
        Cochrane Database Syst Rev. 2013; 9: CD009796
        • van Ittersum M.W.
        • van Wilgen C.P.
        • van der Schans C.P.
        • Lambrecht L.
        • Groothoff J.W.
        • Nijs J.
        Written pain neuroscience education in fibromyalgia: a multicenter randomized controlled trial.
        Pain Pract. 2014; 14: 689-700
        • Gutierrez-Arcelus M.
        • Ongen H.
        • Lappalainen T.
        • et al.
        Tissue-specific effects of genetic and epigenetic variation on gene regulation and splicing.
        PLoS Genet. 2015; 11e1004958
        • Keller S.
        • Sarchiapone M.
        • Zarrilli F.
        • et al.
        Increased BDNF promoter methylation in the Wernicke area of suicide subjects.
        Arch Gen Psychiatry. 2010; 67: 258-267
        • Byun H.M.
        • Nordio F.
        • Coull B.A.
        • et al.
        Temporal stability of epigenetic markers: sequence characteristics and predictors of short-term DNA methylation variations.
        PLoS One. 2012; 7e39220
        • Diamond M.L.
        • Ritter A.C.
        • Failla M.D.
        • et al.
        IL-1β associations with posttraumatic epilepsy development: a genetics and biomarker cohort study.
        Epilepsia. 2015; 56: 991-1001