Original research| Volume 99, ISSUE 11, P2263-2270, November 2018

Myoelectric Prosthesis Users Improve Performance Time and Accuracy Using Vibrotactile Feedback When Visual Feedback Is Disturbed



      To evaluate the effects of adding vibrotactile feedback (VTF) in myoelectric prosthesis users during performance of a functional task when visual feedback is disturbed.


      A repeated-measures design with a counter-balanced order of 3 conditions.


      Laboratory setting.


      Transradial amputees using a myoelectric prosthesis with normal or corrected eyesight (N=12, median age 65±13y). Exclusion criteria were orthopedic or neurologic problems.


      All participants performed the modified Box and Blocks Test, grasping and manipulating 16 blocks over a partition using their myoelectric prosthesis. This was performed 3 times: in full light, in a dark room without VTF, and in a dark room with VTF.

      Main Outcome Measures

      Performance time, that is, the time needed to transfer 1 block, and accuracy during performance, measured by number of empty grips, empty transitions with no block and block drops from the hand.


      Significant differences were found in all outcome measures when VTF was added, with improved performance time (4.2 vs 5.3s) and a reduced number of grasping errors (3.0 vs 6.5 empty grips, 1.5 vs 4 empty transitions, 2.0 vs 4.5 block drops).


      Adding VTF to myoelectric prosthesis users has positive effects on performance time and accuracy when visual feedback is disturbed.


      List of abbreviations:

      VTF (vibrotactile feedback)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Archives of Physical Medicine and Rehabilitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Solarz M.K.
        • Thoder J.J.
        • Rehman S.
        Management of major traumatic upper extremity amputations.
        Orthop Clin North Am. 2016; 47: 127-136
        • Farina D.
        • Amsüss S.
        Reflections on the present and future of upper limb prostheses.
        Expert Rev Med Devices. 2016; 13: 321-324
        • Fougner A.
        • Stavdahl O.
        • Kyberd P.J.
        • Losier Y.G.
        • Parker P.A.
        Control of upper limb prostheses: terminology and proportional myoelectric control - a review.
        IEEE Trans Neural Syst Rehabil Eng. 2012; 205: 663-677
        • Carey S.L.
        • Lura D.J.
        • Highsmith M.J.
        Differences in myoelectric and body-powered upper-limb prostheses: systematic literature review.
        J Rehabil Res Dev. 2015; 52: 247-262
        • Pylatiuk C.
        • Schulz S.
        • Döderlein L.
        Results of an Internet survey of myoelectric prosthetic hand users.
        Prosthet Orthot Int. 2007; 31: 362-370
        • Ziegler-Graham K.
        • MacKenzie E.J.
        • Ephraim P.L.
        • Travison T.G.
        • Brookmeyer R.
        Estimating the prevalence of limb loss in the United States: 2005 to 2050.
        Arch Phys Med Rehabil. 2008; 89: 422-429
        • Svensson P.
        • Wijk U.
        • Björkman A.
        • Antfolk C.
        A review of invasive and non-invasive sensory feedback in upper limb prostheses.
        Expert Rev Med Devices. 2017; 14: 439-447
        • Antfolk C.
        • D'Alonzo M.
        • Rosén B.
        • Lundborg G.
        • Sebelius F.
        • Cipriani C.
        Sensory feedback in upper limb prosthetics.
        Expert Rev Med Devices. 2013; 101: 45-54
        • Clemente F.
        • D'Alonzo M.
        • Controzzi M.
        • Edin B.
        • Cipriani C.
        Non-invasive, temporally discrete feedback of object contact and release improves grasp control of closed-loop myoelectric transradial prostheses.
        IEEE Trans Neural Syst Rehabil Eng. 2016; 24: 1314-1322
        • Witteveen H.J.
        • Rietman H.S.
        • Veltink P.H.
        Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users.
        Prosthet Orthot Int. 2015; 39: 204-212
        • Saunders I.
        • Vijayakumar S.
        The role of feed-forward and feedback processes for closed-loop prosthesis control.
        J Neuroeng Rehabil. 2011; 8: 60
        • Schiefer M.
        • Tan D.
        • Sidek S.M.
        • Tyler D.J.
        Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis.
        J Neural Eng. 2016; 13: 016001
        • Raspopovic S.
        • Capogrosso M.
        • Petrini F.M.
        • et al.
        Restoring natural sensory feedback in real-time bidirectional hand prostheses.
        Sci Transl Med. 2014; 6: 222ra19
        • Witteveen H.J.
        • Luft F.
        • Rietman J.S.
        • Veltink P.H.
        Stiffness feedback for myoelectric forearm prostheses using vibrotactile stimulation.
        IEEE Trans Neural Syst Rehabil Eng. 2014; 22: 53-61
        • Patterson P.E.
        • Katz J.A.
        Design and evaluation of a sensory feedback system that provides grasping pressure in a myoelectric hand.
        Rehabil Res Dev. 1992; 29: 1-8
        • Wijk U.
        • Carlsson I.
        Forearm amputees’ views of prosthesis use and sensory feedback.
        J Hand Ther. 2015; 28: 269-277
        • Latash M.L.
        Fundamentals of motor control.
        1st ed. Academic Press, London2012
        • Wang S.
        • Hsu C.J.
        • Trent L.
        • et al.
        Evaluation of performance-based outcome measures for the upper limb: a systematic review.
        PM R. 2018; 10 (e3): 951-962
        • Raveh E.
        • Portnoy S.
        • Friedman J.
        Adding vibrotactile feedback to a myoelectric-controlled hand improves performance when online visual feedback is disturbed.
        Hum Mov Sci. 2018; 58: 32-40
        • Dupont W.D.
        • Plummer Jr., W.D.
        Power and sample size calculations for studies involving linear regression.
        Control Clin Trials. 1998; 19: 589-601
        • Burger H.
        • Franchignoni F.
        • Heinemann A.W.
        • Kotnik S.
        • Giordano A.
        Validation of the orthotics and prosthetics user survey upper extremity functional status module in people with unilateral upper limb amputation.
        J Rehabil Med. 2008; 40: 393-399
        • Gallagher P.
        • Franchignoni F.
        • Giordano A.
        • MacLachlan M.
        Trinity amputation and prosthesis experience scales: a psychometric assessment using classical test theory and rasch analysis.
        Am J Phys Med Rehabil. 2010; 89: 487-496
        • Witteveen H.J.
        • de Rond L.
        • Rietman J.S.
        • Veltink P.H.
        Hand-opening feedback for myoelectric forearm prostheses: performance in virtual grasping tasks influenced by different levels of distraction.
        J Rehabil Res Dev. 2012; 49: 1517-1526
        • Hebert J.S.
        • Lewicke J.
        Case report of modified Box and Blocks test with motion capture to measure prosthetic function.
        J Rehabil Res Dev. 2012; 498: 1163-1174
        • Cheng N.
        • Amend J.
        • Farrell T.
        • et al.
        Prosthetic jamming terminal device: a case study of untethered soft robotics.
        Soft Robot. 2016; 3: 205-212
        • Edwards A.L.
        • Dawson M.R.
        • Hebert J.S.
        • et al.
        Application of real-time machine learning to myoelectric prosthesis control: a case series in adaptive switching.
        Prosthet Orthot Int. 2016; 40: 573-581
        • Hebert J.S.
        • Lewicke J.
        • Williams T.R.
        • Vette A.H.
        Normative data for modified Box and Blocks test measuring upper-limb function via motion capture.
        J Rehabil Res Dev. 2014; 51: 918-932
        • Mathiowetz V.
        • Volland G.
        • Kashman N.
        • Weber K.
        Adult norms for the Box and Block Test of manual dexterity.
        Am J Occup Ther. 1985; 39: 386-391
        • Alt Murphy M.
        • Resteghini C.
        • Feys P.
        • Lamers I.
        An overview of systematic reviews on upper extremity outcome measures after stroke.
        BMC Neurol. 2015; 15: 29
        • Rombokas E.
        • Stepp C.E.
        • Chang C.
        • Malhotra M.
        • Matsuoka Y.
        Vibrotactile sensory substitution for electromyographic control of object manipulation.
        IEEE Trans Biomed Eng. 2013; 60: 2226-2232
        • Ninu A.
        • Dosen S.
        • Muceli S.
        • Rattay F.
        • Dietl H.
        • Farina D.
        Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control?.
        IEEE Trans Neural Syst Rehabil Eng. 2014; 22: 1041-1052
        • De Nunzio A.M.
        • Dosen S.
        • Lemling S.
        • et al.
        Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels.
        Exp Brain Res. 2017; 235: 2547-2559
        • Flanagan J.R.
        • Bowman M.C.
        • Johansson R.S.
        Control strategies in object manipulation tasks.
        Curr Opin Neurobiol. 2006; 16: 650-659
        • Ernst M.O.
        • Banks M.S.
        Humans integrate visual and haptic information in a statistically optimal fashion.
        Nature. 2002; 415: 429-433
        • Gori M.
        • Vercillo T.
        • Sandini G.
        • Burr D.
        Tactile feedback improves auditory spatial localization.
        Front Psychol. 2014; 5: 1121
        • Helbig H.B.
        • Ernst M.O.
        Optimal integration of shape information from vision and touch.
        Exp Brain Res. 2007; 179: 595-606
        • Bingham G.P.
        • Mon-Williams M.
        The dynamics of sensorimotor calibration in reaching-to-grasp movements.
        J Neurophysiol. 2013; 110: 2857-2862
        • Polechoński J.
        • Olex-Zarychta D.
        The influence of tactile feedback on hand movement accuracy.
        Hum Mov. 2012; 13: 236-241
        • Bozzacchi C.
        • Volcic R.
        • Domini F.
        Effect of visual and haptic feedback on grasping movements.
        J Neurophysiol. 2014; 112: 3189-3196
        • Nowak D.A.
        • Glasauer S.
        • Hermsdörfer J.
        Grip force efficiency in long-term deprivation of somatosensory feedback.
        Neuroreport. 2003; 14: 1803-1807
        • Bongers R.M.
        • Kyberd P.J.
        • Bouwsema H.
        • Kenney L.P.
        • Plettenburg D.H.
        • Van Der Sluis C.K.
        Bernstein’s levels of construction of movements applied to upper limb prosthetics.
        J Prosthet Orthot. 2012; 24: 67-76
        • Haverkate L.
        • Smit G.
        • Plettenburg D.H.
        Assessment of body-powered upper limb prostheses by able-bodied subjects, using the Box and Blocks Test and the Nine-Hole Peg Test.
        Prosthet Orthot Int. 2016; 40: 109-116
        • Resnik L.
        • Borgia M.
        • Latlief G.
        • Sasson N.
        • Smurr-Walters L.
        Self-reported and performance-based outcomes using DEKA Arm.
        J Rehabil Res Dev. 2014; 51: 351-362
        • Markovic M.
        • Schweisfurth M.A.
        • Engels L.F.
        • et al.
        The clinical relevance of advanced artificial feedback in the control of a multi-functional myoelectric prosthesis.
        J Neuroeng Rehabil. 2018; 15: 28
        • Metcalf C.
        • Adams J.
        • Burridge J.
        • Yule V.
        • Chappell P.
        A review of clinical upper limb assessments within the framework of the WHO ICF.
        Musculoskeletal Care. 2007; 5: 160-173
        • Vujaklija I.
        • Roche A.D.
        • Hasenoehrl T.
        • et al.
        Translating research on myoelectric control into clinics—are the performance assessment methods adequate?.
        Front Neurorobot. 2017; 11: 7
        • Chadwell A.
        • Kenney L.
        • Thies S.
        • Galpin A.
        • Head J.
        The reality of myoelectric prostheses: understanding what makes these devices difficult for some users to control.
        Front Neurorobot. 2016; 10: 7