Original research| Volume 99, ISSUE 11, P2257-2262, November 2018

Evidence of Generalized Muscle Stiffness in the Presence of Latent Trigger Points Within Infraspinatus

Published:April 27, 2018DOI:


      • Patients’ infraspinatus with trigger points are stiffer than matched controls
      • Heightened stiffness present in contralateral uninvolved infraspinatus
      • No evidence of a localized band with increased tissue stiffness



      To evaluate stiffness of infraspinatus muscle tissue, both with and without latent trigger points, using ultrasound shear wave elastography (SWE). The primary hypothesis is that muscle with a latent trigger point will demonstrate a discrete region of increased shear wave speed. The secondary hypothesis is that shear wave speed (SWS) in the region with the trigger point will be higher in patients compared with controls, and will be similar between the two groups in the uninvolved regions.




      Hospital–based outpatient physical therapy center.


      Convenience sample (N=18) of patients (6 female, 3 male, mean age=44) (range=31-61y) diagnosed with latent trigger points in infraspinatus and matched controls without trigger points.

      Main Outcome Measures

      Shear wave speed (m/s).


      SWS of the latent trigger point (mean=4.09±SD1.4 m/s) did not differ from the adjacent muscle tissue (3.92±1.6 m/s, P>.05), but was elevated compared to corresponding tissue in controls (2.8±0.75 m/s, P=.02). SWS was generally greater in patients’ uninvolved tissue (3.83±1.6 m/s) when compared to corresponding tissue in controls (2.62±0.2 m/s, P=.05).


      Although discrete regions of increased SWS corresponding to the trigger point were not observed in patients, evidence of generally increased muscle stiffness in infraspinatus was exhibited compared to healthy controls. Further study of additional muscles with SWE is warranted.


      List of abbreviations:

      MRE (Magnetic Resonance Elastography), SWE (Shear Wave Elastography), SWS (Shear Wave Speed)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Archives of Physical Medicine and Rehabilitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Bron C.
        • Dommerholt J.D.
        Etiology of myofascial trigger points.
        Curr Pain Headache Rep. 2012; 16: 439-444
        • Cummings T.M.
        • White A.R.
        Needling therapies in the management of myofascial trigger point pain: a systematic review.
        Arch Phys Med Rehabil. 2001; 82: 986-992
        • Fomby E.W.
        • Mellion M.B.
        Identifying and treating myofascial pain syndrome.
        Phys Sportsmed. 1997; 25: 67-75
        • Huguenin L.K.
        Myofascial trigger points: the current evidence.
        Phys Ther Sport. 2004; 5: 2-12
        • Simons D.G.
        • Travell J.G.
        • Simons L.S.
        Travell & Simons’ Myofascial Pain and Dysfunction: Upper half of body.
        Lippincott Williams & Wilkins, 1999
        • Diercks R.
        • Bron C.
        • Dorrestijn O.
        • Meskers C.
        • Naber R.
        • de Ruiter T.
        • et al.
        Guideline for diagnosis and treatment of subacromial pain syndrome: a multidisciplinary review by the Dutch Orthopaedic Association.
        Acta Orthop. 2014; 85: 314-322
        • Gerwin R.D.
        • Shannon S.
        • Hong C.Z.
        • Hubbard D.
        • Gevirtz R.
        Interrater reliability in myofascial trigger point examination.
        Pain. 1997; 69: 65-73
        • Myburgh C.
        • Larsen A.H.
        • Hartvigsen J.
        A systematic, critical review of manual palpation for identifying myofascial trigger points: evidence and clinical significance.
        Arch Phys Med Rehabil. 2008; 89: 1169-1176
        • Tough E.A.
        • White A.R.
        • Richards S.
        • Campbell J.
        Variability of criteria used to diagnose myofascial trigger point pain syndrome–evidence from a review of the literature.
        Clin J Pain. 2007; 23: 278-286
        • Quintner J.L.
        • Bove G.M.
        • Cohen M.L.
        A critical evaluation of the trigger point phenomenon.
        Rheumatol Oxf Engl. 2015; 54: 392-399
        • Bron C.
        • Wensing M.
        • Franssen J.L.
        • Oostendorp R.A.
        Treatment of myofascial trigger points in common shoulder disorders by physical therapy: a randomized controlled trial [ISRCTN75722066].
        BMC Musculoskelet Disord. 2007; 8: 107
        • Sciotti V.M.
        • Mittak V.L.
        • DiMarco L.
        • Ford L.M.
        • Plezbert J.
        • Santipadri E.
        • et al.
        Clinical precision of myofascial trigger point location in the trapezius muscle.
        Pain. 2001; 93: 259-266
        • Rathbone A.
        • Henry J.
        • Kumbhare D.
        Comment on: A critical evaluation of the trigger point phenomenon.
        Rheumatology. 2015; 54: 1126-1127
        • Fernández-de-Las-Peñas C.
        • Dommerholt J.
        International consensus on diagnostic criteria and clinical considerations of myofascial trigger points: a delphi study.
        Pain Med Malden Mass. 2018; 19: 142-150
        • Shah J.P.
        • Gilliams E.A.
        Uncovering the biochemical milieu of myofascial trigger points using in vivo microdialysis: an application of muscle pain concepts to myofascial pain syndrome.
        J Bodyw Mov Ther. 2008; 12: 371-384
        • Sikdar S.
        • Shah J.P.
        • Gebreab T.
        • Yen R.-H.
        • Gilliams E.
        • Danoff J.
        • et al.
        Novel applications of ultrasound technology to visualize and characterize myofascial trigger points and surrounding soft tissue.
        Arch Phys Med Rehabil. 2009; 90: 1829-1838
        • Shankar H.
        • Reddy S.
        Two– and three–dimensional ultrasound imaging to facilitate detection and targeting of taut bands in myofascial pain syndrome.
        Pain Med. 2012; 13: 971-975
        • Chen Q.
        • Wang H.J.
        • Gay R.E.
        • Thompson J.M.
        • Manduca A.
        • An K.N.
        • et al.
        Quantification of myofascial taut bands.
        Arch Phys Med Rehabil. 2016; 97: 67-73
        • Turo D.
        • Otto P.
        • Shah J.P.
        • Heimur J.
        • Gebreab T.
        • Zaazhoa M.
        • et al.
        Ultrasonic characterization of the upper trapezius muscle in patients with chronic neck pain.
        Ultrason Imaging. 2013; 35: 173-187
        • Bercoff J.
        • Tanter M.
        • Fink M.
        Supersonic shear imaging: a new technique for soft tissue elasticity mapping.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2004; 51: 396-409
        • D’Onofrio M.
        • Gallotti A.
        • Mucelli R.P.
        Tissue quantification with acoustic radiation force impulse imaging: measurement repeatability and normal values in the healthy liver.
        AJR Am J Roentgenol. 2010; 195: 132-136
        • Sebag F.
        • Vaillant-Lombard J.
        • Berbis J.
        • Griset V.
        • Henry J.F.
        • Petit P.
        • et al.
        Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules.
        J Clin Endocrinol Metab. 2010; 95: 5281-5288
        • Athanasiou A.
        • Tardivon A.
        • Tanter M.
        • Sigal-Zafrani B.
        • Bercoff J.
        • Deffieux T.
        • et al.
        Breast lesions: quantitative elastography with supersonic shear imaging–preliminary results.
        Radiology. 2010; 256: 297-303
        • Lacourpaille L.
        • Hug F.
        • Bouillard K.
        • Hogrel J.Y.
        • Nordez A.
        Supersonic shear imaging provides a reliable measurement of resting muscle shear elastic modulus.
        Physiol Meas. 2012; 33: N19-N28
        • Eby S.F.
        • Song P.
        • Chen S.
        • Chen Q.
        • Greenleaf J.F.
        • An K.N.
        Validation of shear wave elastography in skeletal muscle.
        J Biomech. 2013; 46: 2381-2387
        • Nordez A.
        • Gennisson J.L.
        • Casari P.
        • Catheline S.
        • Cornu C.
        Characterization of muscle belly elastic properties during passive stretching using transient elastography.
        J Biomech. 2008; 41: 2305-2311
        • Nakamura M.
        • Ikezoe T.
        • Kobayashi T.
        • Umegaki H.
        • Takeno Y.
        • Nishishita S.
        • et al.
        Acute effects of static stretching on muscle hardness of the medial gastrocnemius muscle belly in humans: an ultrasonic shear–wave elastography study.
        Ultrasound Med Biol. 2014; 40: 1991-1997
        • DeWall R.J.
        • Slane L.C.
        • Lee K.S.
        • Thelen D.G.
        Spatial variations in Achilles tendon shear wave speed.
        J Biomech. 2014; 47: 2685-2692
        • Slane L.C.
        • Martin J.
        • DeWall R.
        • Thelen D.
        • Lee K.
        Quantitative ultrasound mapping of regional variations in shear wave speeds of the aging Achilles tendon.
        Eur Radiol. 2017; 27: 474-482
        • Yamauchi T.
        • Hasegawa S.
        • Nakamura M.
        • Nishishita S.
        • Yanase K.
        • Fujita K.
        • et al.
        Effects of two stretching methods on shoulder range of motion and muscle stiffness in baseball players with posterior shoulder tightness: a randomized controlled trial.
        J Shoulder Elbow Surg. 2016; 25: 1395-1403
        • Maher R.M.
        • Hayes D.M.
        • Shinohara M.
        Quantification of dry needling and posture effects on myofascial trigger points using ultrasound shear–wave elastography.
        Arch Phys Med Rehabil. 2013; 94: 2146-2150
        • Chernak L.A.
        • DeWall R.J.
        • Lee K.S.
        • Thelen D.G.
        Length and activation dependent variations in muscle shear wave speed.
        Physiol Meas. 2013; 34: 713-721
      1. Lenth, R. V. Java Applets for Power and Sample Size. Available at:∼rlenth/Power. Accessed June 1, 2012.

        • Cohen J.
        Statistical power analysis for the behavioral sciences.
        Lawrence Erlbaum, 1988
        • Arda K.
        • Ciledag N.
        • Aktas E.
        • Aribas B.K.
        • Köse K.
        Quantitative assessment of normal soft–tissue elasticity using shear–wave ultrasound elastography.
        AJR Am J Roentgenol. 2011; 197: 532-536
        • Nordez A.
        • Hug F.
        Muscle shear elastic modulus measured using supersonic shear imaging is highly related to muscle activity level.
        J Appl Physiol (1985). 2010; 108: 1389-1394
        • Hug F.
        • Lacourpaille L.
        • Maïsetti O.
        • Nordez A.
        Slack length of gastrocnemius medialis and Achilles tendon occurs at different ankle angles.
        J Biomech. 2013; 46: 2534-2538
        • Koppenhaver S.
        • Harris D.
        • Harris A.
        • O’Connor E.
        • Dummar M.
        • Croy T.
        • et al.
        The reliability of rehabilitative ultrasound imaging in the measurement of infraspinatus muscle function in the symptomatic and asymptomatic shoulders of patients with unilateral shoulder impingement syndrome.
        Int J Sports Phys Ther. 2015; 10: 128-135
        • O’Sullivan C.
        • Meaney J.
        • Boyle G.
        • Gormley J.
        • Stokes M.
        The validity of rehabilitative ultrasound imaging for measurement of trapezius muscle thickness.
        Man Ther. 2009; 14: 572-578
        • Téllez-García M.
        • de-la-Llave-Rincón A.I.
        • Salom-Moreno J.
        • Palacios-Ceña M.
        • Ortega-Santiago R.
        • Fernández-de-Las-Peñas C.
        Neuroscience education in addition to trigger point dry needling for the management of patients with mechanical chronic low back pain: a preliminary clinical trial.
        J Bodyw Mov Ther. 2015; 19: 464-472
        • Slater H.
        • Thériault E.
        • Ronningen B.O.
        • Clark R.
        • Nosaka K.
        Exercise–induced mechanical hypoalgesia in musculotendinous tissues of the lateral elbow.
        Man Ther. 2010; 15: 66-73
        • Koltyn K.F.
        Exercise–induced hypoalgesia and intensity of exercise.
        Sports Med. 2002; 32: 477-487
        • Fernández-de-las-Peñas C.
        • Dommerholt J.
        Myofascial trigger points: peripheral or central phenomenon?.
        Curr Rheumatol Rep. 2014; 16: 395