Advertisement

Is Going Beyond Rasch Analysis Necessary to Assess the Construct Validity of a Motor Function Scale?

  • Author Footnotes
    ∗ Guillot and Roche contributed equally to this work.
    Tiffanie Guillot
    Footnotes
    ∗ Guillot and Roche contributed equally to this work.
    Affiliations
    Service de Biostatistique-Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, Lyon, France
    Search for articles by this author
  • Author Footnotes
    ∗ Guillot and Roche contributed equally to this work.
    Sylvain Roche
    Footnotes
    ∗ Guillot and Roche contributed equally to this work.
    Affiliations
    Service de Biostatistique-Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, Lyon, France

    Université de Lyon, Lyon, France

    Université Lyon 1, Villeurbanne, France

    CNRS UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Équipe Biostatistique Santé, Pierre-Bénite, France
    Search for articles by this author
  • Pascal Rippert
    Affiliations
    Hospices Civils de Lyon, Pôle Information Médicale, Évaluation, Recherche, Lyon, France
    Search for articles by this author
  • Dalil Hamroun
    Affiliations
    Direction de la Recherche et de l'Innovation, Centre Hospitalo-Universitaire de Montpellier, Montpellier, France
    Search for articles by this author
  • Jean Iwaz
    Affiliations
    Service de Biostatistique-Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, Lyon, France

    Université de Lyon, Lyon, France

    Université Lyon 1, Villeurbanne, France

    CNRS UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Équipe Biostatistique Santé, Pierre-Bénite, France
    Search for articles by this author
  • René Ecochard
    Affiliations
    Service de Biostatistique-Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, Lyon, France

    Université de Lyon, Lyon, France

    Université Lyon 1, Villeurbanne, France

    CNRS UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Équipe Biostatistique Santé, Pierre-Bénite, France
    Search for articles by this author
  • Carole Vuillerot
    Correspondence
    Corresponding author Carole Vuillerot, PhD, MD, L’Escale, Hôpital Femme-Mère-Enfant, HCL, 59 Boulevard Pinel, F-69500, Bron, France.
    Affiliations
    Université de Lyon, Lyon, France

    Université Lyon 1, Villeurbanne, France

    CNRS UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Équipe Biostatistique Santé, Pierre-Bénite, France

    L’Escale, Service de Médecine Physique et de Réadaptation Pédiatrique, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Bron, France
    Search for articles by this author
  • theMFM Study Group
  • Author Footnotes
    ∗ Guillot and Roche contributed equally to this work.
Published:April 03, 2018DOI:https://doi.org/10.1016/j.apmr.2018.02.017

      Abstract

      Objective

      To examine whether a Rasch analysis is sufficient to establish the construct validity of the Motor Function Measure (MFM) and discuss whether weighting the MFM item scores would improve the MFM construct validity.

      Design

      Observational cross-sectional multicenter study.

      Setting

      Twenty-three physical medicine departments, neurology departments, or reference centers for neuromuscular diseases.

      Participants

      Patients (N=911) aged 6 to 60 years with Charcot-Marie-Tooth disease (CMT), facioscapulohumeral dystrophy (FSHD), or myotonic dystrophy type 1 (DM1).

      Interventions

      None.

      Main Outcome Measure(s)

      Comparison of the goodness-of-fit of the confirmatory factor analysis (CFA) model vs that of a modified multidimensional Rasch model on MFM item scores in each considered disease.

      Results

      The CFA model showed good fit to the data and significantly better goodness of fit than the modified multidimensional Rasch model regardless of the disease (P<.001). Statistically significant differences in item standardized factor loadings were found between DM1, CMT, and FSHD in only 6 of 32 items (items 6, 27, 2, 7, 9 and 17).

      Conclusions

      For multidimensional scales designed to measure patient abilities in various diseases, a Rasch analysis might not be the most convenient, whereas a CFA is able to establish the scale construct validity and provide weights to adapt the item scores to a specific disease.

      Keywords

      List of abbreviations:

      CMT (Charcot-Marie-Tooth disease), CFA (confirmatory factor analysis), D1 (standing position and transfers), D2 (axial and proximal motor function), D3 (distal motor function), DM1 (myotonic dystrophy type I), FL (factor loading), FSHD (facioscapulohumeral dystrophy), IRT (item response theory), MDR (multidimensional Rasch), MMDR (modified MDR), MFM (Motor Function Measure), NMD (neuromuscular disease)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Archives of Physical Medicine and Rehabilitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fowler W.M.
        • Abresch R.T.
        • Aitkens S.
        • et al.
        Profiles of neuromuscular diseases. Design of the protocol.
        Am J Phys Med Rehabil. 1995; 74: S62-S69
        • Scott E.
        • Mawson S.J.
        Measurement in Duchenne muscular dystrophy: considerations in the development of a neuromuscular assessment tool.
        Dev Med Child Neurol. 2006; 48: 540-544
        • Montes J.
        • Gordon A.M.
        • Pandya S.
        • De Vivo D.C.
        • Kaufmann P.
        Clinical outcome measures in spinal muscular atrophy.
        J Child Neurol. 2009; 24: 968-978
        • Conrad K.J.
        • Smith Jr., E.V.
        International conference on objective measurement: applications of Rasch analysis in health care.
        Med Care. 2004; 42: I1-I6
        • Reeve B.
        • Fayers P.
        Applying item response theory modeling for evaluating questionnaire item and scale properties.
        in: Fayers P. Hays R.D. Assessing quality of life in clinical trials: methods of practice. Oxford University Press, Oxford, UK2005: 55-73
        • Hobart J.C.
        • Cano S.J.
        • Zajicek J.P.
        • Thompson A.J.
        Rating scales as outcome measures for clinical trials in neurology: problems, solutions, and recommendations.
        Lancet Neurol. 2007; 6: 1094-1105
        • Tennant A.
        • Conaghan P.G.
        The Rasch measurement model in rheumatology: what is it and why use it? When should it be applied, and what should one look for in a Rasch paper?.
        Arthritis Rheum. 2007; 57: 1358-1362
        • Vandervelde L.
        • Van den Bergh P.Y.K.
        • Goemans N.
        • Thonnard J.-L.
        Activity limitations in patients with neuromuscular disorders: a responsiveness study of the ACTIVLIM questionnaire.
        Neuromuscul Disord. 2009; 19: 99-103
        • Mayhew A.
        • Mazzone E.S.
        • Eagle M.
        • et al.
        Development of the Performance of the Upper Limb module for Duchenne muscular dystrophy.
        Dev Med Child Neurol. 2013; 55: 1038-1045
        • Andrich D.
        Controversy and the Rasch model: a characteristic of incompatible paradigms?.
        Med Care. 2004; 42: I7-I16
        • Mayhew A.
        • Cano S.
        • Scott E.
        • et al.
        Moving towards meaningful measurement: Rasch analysis of the North Star Ambulatory Assessment in Duchenne muscular dystrophy.
        Dev Med Child Neurol. 2011; 53: 535-542
        • Vuillerot C.
        • Rippert P.
        • Kinet V.
        • et al.
        Rasch analysis of the motor function measure in patients with congenital muscle dystrophy and congenital myopathy.
        Arch Phys Med Rehabil. 2014; 95: 2086-2095
        • Bérard C.
        • Payan C.
        • Hodgkinson I.
        • Fermanian J.
        • MFM Collaborative Study Group
        A motor function measure for neuromuscular diseases. Construction and validation study.
        Neuromuscul Disord. 2005; 15: 463-470
        • Ford J.K.
        • MacCallum R.C.
        • Tait M.
        The application of exploratory factor analysis in applied psychology: a critical review and analysis.
        Pers Psychol. 1986; 39: 291-314
        • Gelman A.
        • Carlin J.B.
        • Stern H.S.
        • Rubin D.B.
        Numerical posterior predictive checks.
        Bayesian data analysis. 2nd ed. Chapman and Hall/CRC, Boca Raton, FL2004: 172
        • Benjamini Y.
        • Hochberg Y.
        Controlling the false discovery rate: a practical and powerful approach to multiple testing.
        J R Stat Soc Series B Stat Methodol. 1995; 57: 289-300
        • Reckase M.
        Multidimensional item response theory.
        Springer, New York2009
        • Muthén L.K.
        • Muthén B.O.
        Mplus user’s guide: statistical analysis with latent variables.
        7th ed. Muthén & Muthén, Los Angeles, CA2012
        • Rasch G.
        Studies in mathematical psychology. I, Probabilistic models for some intelligence and attainment tests.
        Danmarks Pædagogiske Institut, Copenhagen1960
        • Streiner D.L.
        • Norman G.R.
        • Cairney J.
        Health measurement scales: a practical guide to their development and use.
        5th ed. Oxford University Press, Oxford, UK2015
        • Flora D.B.
        • Curran P.J.
        An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data.
        Psychol Methods. 2004; 9: 466-491

      References

        • Jöreskog K.G.
        A general approach to confirmatory maximum likelihood factor analysis.
        Psychometrika. 1969; 34: 183-202
        • Baker F.B.
        • Kim S.-H.
        Item response theory: parameter estimation techniques.
        CRC Press, Boca Raton, FL2004
        • Ford J.K.
        • MacCallum R.C.
        • Tait M.
        The application of exploratory factor analysis in applied psychology: a critical review and analysis.
        Pers Psychol. 1986; 39: 291-314
        • Muthén L.K.
        • Muthén B.O.
        Mplus user’s guide: statistical analysis with latent variables.
        7th ed. Muthén & Muthén, Los Angeles, CA2012
        • Muthén B.O.
        • du Toit S.H.C.
        • Spisic D.
        Robust inference using weighted least squares and quadratic estimating equations in latent variable modeling with categorical and continuous outcomes.
        (Available at:) (Accessed February 1, 2018)
        • Flora D.B.
        • Curran P.J.
        An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data.
        Psychol Methods. 2004; 9: 466-491
      1. Muthén BO. Mplus StatisticalAnalyses with Latent variables. Technical Appendices. Los Angeles, CA: Muthén & Muthén. 1998-2004. Available at: https://www.statmodel.com/download/techappen.pdf. Accessed February 1, 2018.

        • Hu L.
        • Bentler P.M.
        Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives.
        Struct Equ Model. 1999; 6: 1-55
        • Browne M.W.
        • Cudeck R.
        Alternative ways of assessing model fit.
        in: Bollen K.A. Long J.S. Testing structural equation models. Sage Publications, Beverly Hills, CA1993: 136-162
        • Yu C.-Y.
        Evaluating cutoff criteria of model fit indices for latent variable models with binary and continuous outcomes [dissertation].
        University of California Los Angeles, Los Angeles, CA2002
        • Sörbom D.
        Model modification.
        Psychometrika. 1989; 54: 371-384
        • Bland J.M.
        • Altman D.
        Statistical methods for assessing agreement between two methods of clinical measurement.
        Lancet. 1986; 327: 307-310
        • Bland J.M.
        • Altman D.G.
        Measuring agreement in method comparison studies.
        Stat Methods Med Res. 1999; 8: 135-160