Abstract
Objective
To systematically review evidence on the effects of timing and intensity of neurorehabilitation
on the functional recovery of patients with moderate to severe traumatic brain injury
(TBI) and aggregate the available evidence using meta-analytic methods.
Data Sources
PubMed, Embase, PsycINFO, and Cochrane Database.
Study Selection
Electronic databases were searched for prospective controlled clinical trials assessing
the effect of timing or intensity of multidisciplinary neurorehabilitation programs
on functional outcome of patients with moderate or severe TBI. A total of 5961 unique
records were screened for relevance, of which 58 full-text articles were assessed
for eligibility by 2 independent authors. Eleven articles were included for systematic
review and meta-analysis.
Data Extraction
Two independent authors performed data extraction and risk of bias analysis using
the Cochrane Collaboration tool. Discrepancies between authors were resolved by consensus.
Data Synthesis
Systematic review of a total of 6 randomized controlled trials, 1 quasi-randomized
trial, and 4 controlled trials revealed consistent evidence for a beneficial effect
of early onset neurorehabilitation in the trauma center and intensive neurorehabilitation
in the rehabilitation facility on functional outcome compared with usual care. Meta-analytic
quantification revealed a large-sized positive effect for early onset rehabilitation
programs (d=1.02; P<.001; 95% confidence interval [CI], 0.56–1.47) and a medium-sized positive effect
for intensive neurorehabilitation programs (d=.67; P<.001; 95% CI, .38–.97) compared with usual care. These effects were replicated based
solely on studies with a low overall risk of bias.
Conclusions
The available evidence indicates that early onset neurorehabilitation in the trauma
center and more intensive neurorehabilitation in the rehabilitation facility promote
functional recovery of patients with moderate to severe TBI compared with usual care.
These findings support the integration of early onset and more intensive neurorehabilitation
in the chain of care for patients with TBI.
Keywords
List of abbreviations:
GCS (Glasgow Coma Scale), GOSE (Glasgow Outcome Scale-Extended), RCT (randomized controlled trial), TBI (traumatic brain injury)To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Archives of Physical Medicine and RehabilitationAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Incidence of traumatic brain injury in New Zealand: a population-based study.Lancet Neurol. 2013; 12: 53-64
- Motor impairment after severe traumatic brain injury: a longitudinal multicenter study.J Rehabil Res Dev. 2007; 44: 975-982
- Intelligence after traumatic brain injury: meta-analysis of outcomes and prognosis.Eur J Neurol. 2016; 23: 21-29
- Systematic review of behavioral interventions targeting social communication difficulties after traumatic brain injury.Arch Phys Med Rehabil. 2016; 97: 1352-1365
- Work-related difficulties in patients with traumatic brain injury: a systematic review on predictors and associated factors.Disabil Rehabil. 2017; 39: 847-855
- Health-related quality of life after TBI: a systematic review of study design, instruments, measurement properties, and outcome.Popul Health Metr. 2015; 13: 4
- Understanding the mechanisms of recovery and/or compensation following injury.Neural Plast. 2017; : 2017
- Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage.J Speech Lang Hear Res. 2008; 51: S225-S239
- Multi-disciplinary rehabilitation for acquired brain injury in adults of working age.Cochrane Database Syst Rev. 2015; : CD004170
- Evidence for the effectiveness of multi-disciplinary rehabilitation following acquired brain injury: a synthesis of two systematic approaches.J Rehabil Med. 2008; 40: 691-701
- Acute neurorehabilitation versus treatment as usual.Br J Neurosurg. 2013; 27: 24-29
- Progress assessed with the Mayo-Portland Adaptability Inventory in 604 participants in 4 types of post-inpatient rehabilitation brain injury programs.Arch Phys Med Rehabil. 2012; 93: 100-107
- Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation.BMJ. 2015; 349: g7647
- Developmental neuropsychology: a clinical approach.Taylor & Francis, New York2014
- The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials.BMJ. 2011; 343: d5928
- Comprehensive meta-analysis.Biostat, Englewood, NJ2005
- Statistical power analysis for the behavioral science.Erlbaum, Hillsdale1988
- Writing meta-analytic reviews.Psychol Bull. 1995; 118: 183-192
- Bias in meta-analysis detected by a simple, graphical test.BMJ. 1997; 315: 629-634
- Early intervention in severe head injury: long-term benefits of a formalized program.Arch Phys Med Rehabil. 1992; 73: 635-641
- Testing a reality orientation program in patients with traumatic brain injury in a neurointensive care unit.J Neurosci Nurs. 2015; 47: E2-E10
- Does an early onset and continuous chain of rehabilitation improve the long-term functional outcome of patients with severe traumatic brain injury?.J Neurotrauma. 2012; 29: 66-74
- Effect of a regular family visiting program as an affective, auditory, and tactile stimulation on the consciousness level of comatose patients with a head injury.Japan J Nurs Sci. 2009; 6: 21-26
- Effect of frequency of multimodal coma stimulation on the consciousness levels of traumatic brain injury comatose patients.Brain Inj. 2013; 27: 570-577
- Effects of a sensory stimulation by nurses and families on level of cognitive function, and basic cognitive sensory recovery of comatose patients with severe.Trauma Mon. 2016; 21: e23531
- The effects of increased rehabilitation therapy after brain injury: results of a prospective controlled trial.Clin Rehabil. 2001; 15: 501-514
- Does intensive rehabilitation improve the functional outcome of patients with traumatic brain injury (TBI)? A randomized controlled trial.Brain Inj. 2007; 21: 681-690
- Outcome of a comprehensive neurorehabilitation program for patients with traumatic brain injury.Arch Phys Med Rehabil. 2005; 86: 2296-2302
- A randomized controlled trial of the effects of intensive sit-to-stand training after recent traumatic brain injury on sit-to-stand performance.Clin Rehabil. 2003; 17
- Community integration and satisfaction with functioning after intensive cognitive rehabilitation for traumatic brain injury.Arch Phys Med Rehabil. 2004; 85: 943-950
- The promotion of recovery through rehabilitation after acquired brain injury in children.Dev Med Child Neurol. 2015; 57: 16-22
- The effects of increased dose of exercise-based therapies to enhance motor recovery after stroke: a systematic review and meta-analysis.BMC Med. 2010; 8: 60
- Multi-disciplinary rehabilitation for acquired brain injury in adults of working age.Cochrane Database Syst Rev. 2005; : CD004170
- Improved designs for cluster randomized trials.Annu Rev Public Health. 2016; 37: 1-16
- The design of cluster randomized crossover trials.J Educ Behav Stat. 2011; 36: 472-490
- Progress in developing common data elements for traumatic brain injury research: version two – the end of the beginning.J Neurotrauma. 2013; 30: 1852-1861
Article info
Publication history
Published online: February 08, 2018
Footnotes
Supported by grants from the Daan Theeuwes Foundation and the Netherlands Organization for Scientific Research (grant no. 022.003.010).
Disclosures: none.
Identification
Copyright
© 2018 by the American Congress of Rehabilitation Medicine