Advertisement

Clinical Use of Neuromuscular Electrical Stimulation for Neuromuscular Rehabilitation: What Are We Overlooking?

Published:December 09, 2017DOI:https://doi.org/10.1016/j.apmr.2017.10.028

      Abstract

      The clinical success of neuromuscular electrical stimulation (NMES) for neuromuscular rehabilitation is greatly compromised by the poor consideration of different physiological and methodological issues that are not always obvious to the clinicians. Therefore, the aim of this narrative review is to reexamine some of these fundamental aspects of NMES using a tripartite model perspective. First, we contend that NMES does not actually bypass the central nervous system but results in a multitude of neurally mediated responses that contribute substantially to force generation and may engender neural adaptations. Second, we argue that too much emphasis is generally placed on externally controllable stimulation parameters while the major determinant of NMES effectiveness is the intrinsically determined muscle tension generated by the current (ie, evoked force). Third, we believe that a more systematic approach to NMES therapy is required in the clinic and this implies a better identification of the patient-specific impairment and of the potential “responders” to NMES therapy. On the basis of these considerations, we suggest that the crucial steps to ensure the clinical effectiveness of NMES treatment should consist of (1) identifying the neuromuscular impairment with clinical assessment and (2) implementing algorithm-based NMES therapy while (3) properly dosing the treatment with tension-controlled NMES and eventually amplifying its neural effects.

      Keywords

      List of abbreviations:

      CNS (central nervous system), MVC (maximum voluntary contraction), NMES (neuromuscular electrical stimulation)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Archives of Physical Medicine and Rehabilitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Banerjee P.
        • Caulfield B.
        • Crowe L.
        • Clark A.L.
        Prolonged electrical muscle stimulation exercise improves strength, peak Vo2, and exercise capacity in patients with stable chronic heart failure.
        J Card Fail. 2009; 15: 319-326
        • Nuhr M.J.
        • Pette D.
        • Berger R.
        • et al.
        Beneficial effects of chronic low-frequency stimulation of thigh muscles in patients with advanced chronic heart failure.
        Eur Heart J. 2004; 25: 136-143
        • Theriault R.
        • Theriault G.
        • Simoneau J.A.
        Human skeletal muscle adaptation in response to chronic low-frequency electrical stimulation.
        J Appl Physiol (1985). 1994; 77: 1885-1889
        • Hermans G.
        • De Jonghe B.
        • Bruyninckx F.
        • Van Den Berghe G.
        Interventions for preventing critical illness polyneuropathy and critical illness myopathy.
        Cochrane Database Syst Rev. 2014; : CD006832
        • Maddocks M.
        • Halliday V.
        • Chauhan A.
        • et al.
        Neuromuscular electrical stimulation of the quadriceps in patients with non-small cell lung cancer receiving palliative chemotherapy: a randomized phase II study.
        PLoS One. 2013; 8: e86059
        • Maffiuletti N.A.
        Physiological and methodological considerations for the use of neuromuscular electrical stimulation.
        Eur J Appl Physiol. 2010; 110: 223-234
        • Maffiuletti N.A.
        • Roig M.
        • Karatzanos E.
        • Nanas S.
        Neuromuscular electrical stimulation for preventing skeletal-muscle weakness and wasting in critically ill patients: a systematic review.
        BMC Med. 2013; 11: 137
        • Pan L.
        • Guo Y.
        • Liu X.
        • Yan J.
        Lack of efficacy of neuromuscular electrical stimulation of the lower limbs in chronic obstructive pulmonary disease patients: a meta-analysis.
        Respirology. 2014; 19: 22-29
        • Gibson J.N.
        • Smith K.
        • Rennie M.J.
        Prevention of disuse muscle atrophy by means of electrical stimulation: maintenance of protein synthesis.
        Lancet. 1988; 2: 767-770
        • Snyder-Mackler L.
        • Delitto A.
        • Stralka S.W.
        • Bailey S.L.
        Use of electrical stimulation to enhance recovery of quadriceps femoris muscle force production in patients following anterior cruciate ligament reconstruction.
        Phys Ther. 1994; 74: 901-907
        • Seyri K.M.
        • Maffiuletti N.A.
        Effect of electromyostimulation training on muscle strength and sports performance.
        Strength Cond J. 2011; 33: 70-75
        • De Oliveira Melo M.
        • Pompeo K.D.
        • Baroni B.M.
        • Vaz M.A.
        Effects of neuromuscular electrical stimulation and low-level laser therapy on neuromuscular parameters and health status in elderly women with knee osteoarthritis: a randomized trial.
        J Rehabil Med. 2016; 48: 293-299
        • Maggioni M.A.
        • Ce E.
        • Rampichini S.
        • et al.
        Electrical stimulation versus kinesitherapy in improving functional fitness in older women: a randomized controlled trial.
        Arch Gerontol Geriatr. 2010; 50: e19-e25
        • Mignardot J.B.
        • Deschamps T.
        • Le Goff C.G.
        • et al.
        Neuromuscular electrical stimulation leads to physiological gains enhancing postural balance in the pre-frail elderly.
        Physiol Rep. 2015; 3
        • Suetta C.
        • Andersen J.L.
        • Dalgas U.
        • et al.
        Resistance training induces qualitative changes in muscle morphology, muscle architecture, and muscle function in elderly postoperative patients.
        J Appl Physiol (1985). 2008; 105: 180-186
        • Burke D.
        • Gorman E.
        • Stokes D.
        • Lennon O.
        An evaluation of neuromuscular electrical stimulation in critical care using the ICF framework: a systematic review and meta-analysis.
        Clin Respir J. 2016; 10: 407-420
        • Intiso D.
        • Santamato A.
        • Di Rienzo F.
        Effect of electrical stimulation as an adjunct to botulinum toxin type A in the treatment of adult spasticity: a systematic review.
        Disabil Rehabil. 2017; 39: 2123-2133
        • Kinnear B.Z.
        • Lannin N.A.
        • Cusick A.
        • Harvey L.A.
        • Rawicki B.
        Rehabilitation therapies after botulinum toxin-A injection to manage limb spasticity: a systematic review.
        Phys Ther. 2014; 94: 1569-1581
        • Stein C.
        • Fritsch C.G.
        • Robinson C.
        • Sbruzzi G.
        • Plentz R.D.
        Effects of electrical stimulation in spastic muscles after stroke: systematic review and meta-analysis of randomized controlled trials.
        Stroke. 2015; 46: 2197-2205
        • Monaghan B.
        • Caulfield B.
        • O'Mathúna D.P.
        Surface neuromuscular electrical stimulation for quadriceps strengthening pre and post total knee replacement.
        Cochrane Database Syst Rev. 2010; : CD007177
        • Volpato H.B.
        • Szego P.
        • Lenza M.
        • Milan S.L.
        • Talerman C.
        • Ferretti M.
        Femoral quadriceps neuromuscular electrical stimulation after total knee arthroplasty: a systematic review.
        Einstein (Sao Paulo). 2016; 14: 77-98
        • Zeng C.
        • Li H.
        • Yang T.
        • et al.
        Electrical stimulation for pain relief in knee osteoarthritis: systematic review and network meta-analysis.
        Osteoarthritis Cartilage. 2015; 23: 189-202
        • Chen R.C.
        • Li X.Y.
        • Guan L.L.
        • et al.
        Effectiveness Of neuromuscular electrical stimulation for the rehabilitation of moderate-to-severe COPD: a meta-analysis.
        Int J Chron Obstruct Pulmon Dis. 2016; 11: 2965-2975
        • Gomes Neto M.
        • Oliveira F.A.
        • Reis H.F.
        • De Sousa Rodrigues Jr., E.
        • Bittencourt H.S.
        • Oliveira Carvalho V.
        Effects of neuromuscular electrical stimulation on physiologic and functional measurements in patients with heart failure: a systematic review with meta-analysis.
        J Cardiopulm Rehabil Prev. 2016; 36: 157-166
        • Jones S.
        • Man W.D.
        • Gao W.
        • Higginson I.J.
        • Wilcock A.
        • Maddocks M.
        Neuromuscular electrical stimulation for muscle weakness in adults with advanced disease.
        Cochrane Database Syst Rev. 2016; 10: CD009419
        • Sillen M.J.
        • Speksnijder C.M.
        • Eterman R.A.
        • et al.
        Effects of neuromuscular electrical stimulation of muscles of ambulation in patients with chronic heart failure or COPD: a systematic review of the English-language literature.
        Chest. 2009; 136: 44-61
        • Bickel C.S.
        • Gregory C.M.
        • Azuero A.
        Matching initial torque with different stimulation parameters influences skeletal muscle fatigue.
        J Rehabil Res Dev. 2012; 49: 323-331
        • Gorgey A.S.
        • Dudley G.A.
        The role of pulse duration and stimulation duration in maximizing the normalized torque during neuromuscular electrical stimulation.
        J Orthop Sports Phys Ther. 2008; 38: 508-516
        • Gorgey A.S.
        • Mahoney E.
        • Kendall T.
        • Dudley G.A.
        Effects of neuromuscular electrical stimulation parameters on specific tension.
        Eur J Appl Physiol. 2006; 97: 737-744
        • Gregory C.M.
        • Dixon W.
        • Bickel C.S.
        Impact of varying pulse frequency and duration on muscle torque production and fatigue.
        Muscle Nerve. 2007; 35: 504-509
        • Kesar T.
        • Binder-Macleod S.
        Effect of frequency and pulse duration on human muscle fatigue during repetitive electrical stimulation.
        Exp Physiol. 2006; 91: 967-976
        • Kesar T.
        • Chou L.W.
        • Binder-Macleod S.A.
        Effects of stimulation frequency versus pulse duration modulation on muscle fatigue.
        J Electromyogr Kinesiol. 2008; 18: 662-671
        • Lieber R.L.
        • Kelly M.J.
        Torque history of electrically stimulated human quadriceps: implications for stimulation therapy.
        J Orthop Res. 1993; 11: 131-141
        • Medeiros F.V.
        • Bottaro M.
        • Vieira A.
        • et al.
        Kilohertz and low-frequency electrical stimulation with the same pulse duration have similar efficiency for inducing isometric knee extension torque and discomfort.
        Am J Phys Med Rehabil. 2017; 96: 388-394
        • Scott W.B.
        • Lee S.C.
        • Johnston T.E.
        • Binkley J.
        • Binder-Macleod S.A.
        Effect of electrical stimulation pattern on the force responses of paralyzed human quadriceps muscles.
        Muscle Nerve. 2007; 35: 471-478
        • Chipchase L.S.
        • Schabrun S.M.
        • Hodges P.W.
        Peripheral electrical stimulation to induce cortical plasticity: a systematic review of stimulus parameters.
        Clin Neurophysiol. 2011; 122: 456-463
        • Blickenstorfer A.
        • Kleiser R.
        • Keller T.
        • et al.
        Cortical and subcortical correlates of functional electrical stimulation of wrist extensor and flexor muscles revealed by fMRI.
        Hum Brain Mapp. 2009; 30: 963-975
        • Francis S.
        • Lin X.
        • Aboushoushah S.
        • et al.
        fMRI analysis of active, passive and electrically stimulated ankle dorsiflexion.
        Neuroimage. 2009; 44: 469-479
        • Smith G.V.
        • Alon G.
        • Roys S.R.
        • Gullapalli R.P.
        Functional MRI determination of a dose-response relationship to lower extremity neuromuscular electrical stimulation in healthy subjects.
        Exp Brain Res. 2003; 150: 33-39
        • Gondin J.
        • Duclay J.
        • Martin A.
        Soleus- and gastrocnemii-evoked V-wave responses increase after neuromuscular electrical stimulation training.
        J Neurophysiol. 2006; 95: 3328-3335
        • Maffiuletti N.A.
        • Pensini M.
        • Martin A.
        Activation of human plantar flexor muscles increases after electromyostimulation training.
        J Appl Physiol (1985). 2002; 92: 1383-1392
        • Hortobagyi T.
        • Scott K.
        • Lambert J.
        • Hamilton G.
        • Tracy J.
        Cross-education of muscle strength is greater with stimulated than voluntary contractions.
        Motor Control. 1999; 3: 205-219
        • Hortobagyi T.
        • Richardson S.P.
        • Lomarev M.
        • et al.
        Interhemispheric plasticity in humans.
        Med Sci Sports Exerc. 2011; 43: 1188-1199
        • Goodwill A.M.
        • Pearce A.J.
        • Kidgell D.J.
        Corticomotor plasticity following unilateral strength training.
        Muscle Nerve. 2012; 46: 384-393
        • Weier A.T.
        • Pearce A.J.
        • Kidgell D.J.
        Strength training reduces intracortical inhibition.
        Acta Physiol (Oxf). 2012; 206: 109-119
        • Collins D.F.
        Central contributions to contractions evoked by tetanic neuromuscular electrical stimulation.
        Exerc Sport Sci Rev. 2007; 35: 102-109
        • Barss T.S.
        • Ainsley E.N.
        • Claveria-Gonzalez F.C.
        • et al.
        Utilizing physiological principles of motor unit recruitment to reduce fatigability of electrically-evoked contractions.
        Arch Phys Med Rehabil. 2017 Sep 19; ([Epub ahead of print])
        • Gueugneau N.
        • Grospretre S.
        • Stapley P.
        • Lepers R.
        High-frequency neuromuscular electrical stimulation modulates interhemispheric inhibition in healthy humans.
        J Neurophysiol. 2017; 117: 467-475
        • Wegrzyk J.
        • Ranjeva J.P.
        • Fouré A.
        • et al.
        Specific brain activation patterns associated with two neuromuscular electrical stimulation protocols.
        Sci Rep. 2017; 7: 2742
        • Lieber R.L.
        • Kelly M.J.
        Factors influencing quadriceps femoris muscle torque using transcutaneous neuromuscular electrical stimulation.
        Phys Ther. 1991; 71 (discussion 22-3): 715-721
        • Alon G.
        High voltage stimulation: effects of electrode size on basic excitatory responses.
        Phys Ther. 1985; 65: 890-895
        • Lyons G.M.
        • Leane G.E.
        • Clarke-Moloney M.
        • O'Brien J.V.
        • Grace P.A.
        An investigation of the effect of electrode size and electrode location on comfort during stimulation of the gastrocnemius muscle.
        Med Eng Phys. 2004; 26: 873-878
        • Gobbo M.
        • Gaffurini P.
        • Bissolotti L.
        • Esposito F.
        • Orizio C.
        Transcutaneous neuromuscular electrical stimulation: influence of electrode positioning and stimulus amplitude settings on muscle response.
        Eur J Appl Physiol. 2011; 111: 2451-2459
        • Vieira T.M.
        • Potenza P.
        • Gastaldi L.
        • Botter A.
        Electrode position markedly affects knee torque in tetanic, stimulated contractions.
        Eur J Appl Physiol. 2016; 116: 335-342
        • Botter A.
        • Oprandi G.
        • Lanfranco F.
        • Allasia S.
        • Maffiuletti N.A.
        • Minetto M.A.
        Atlas of the muscle motor points for the lower limb: implications for electrical stimulation procedures and electrode positioning.
        Eur J Appl Physiol. 2011; 111: 2461-2471
        • Gobbo M.
        • Maffiuletti N.A.
        • Orizio C.
        • Minetto M.A.
        Muscle motor point identification is essential for optimizing neuromuscular electrical stimulation use.
        J Neuroeng Rehabil. 2014; 11: 17
        • Singer K.P.
        • DE Domenico G.
        • Strauss G.
        Electro-motor stimulation research methodology and reporting: a need for standardization.
        Aust J Physiother. 1987; 33: 43-48
        • Vanderthommen M.
        • Duchateau J.
        Electrical stimulation as a modality to improve performance of the neuromuscular system.
        Exerc Sport Sci Rev. 2007; 35: 180-185
        • Lake D.A.
        Neuromuscular electrical stimulation: an overview and its application in the treatment of sports injuries.
        Sports Med. 1992; 13: 320-336
        • Gondin J.
        • Brocca L.
        • Bellinzona E.
        • et al.
        Neuromuscular electrical stimulation training induces atypical adaptations of the human skeletal muscle phenotype: a functional and proteomic analysis.
        J Appl Physiol (1985). 2011; 110: 433-450
        • Lai H.S.
        • Domenico G.D.
        • Strauss G.R.
        The effect of different electro-motor stimulation training intensities on strength improvement.
        Aust J Physiother. 1988; 34: 151-164
        • Miller C.
        • Thepaut-Mathieu C.
        Strength training by electrostimulation conditions for efficacy.
        Int J Sports Med. 1993; 14: 20-28
        • Selkowitz D.M.
        Improvement in isometric strength of the quadriceps femoris muscle after training with electrical stimulation.
        Phys Ther. 1985; 65: 186-196
        • Adams G.R.
        • Harris R.T.
        • Woodard D.
        • Dudley G.A.
        Mapping of electrical muscle stimulation using MRI.
        J Appl Physiol (1985). 1993; 74: 532-537
        • Stevens-Lapsley J.E.
        • Balter J.E.
        • Wolfe P.
        • et al.
        Relationship between intensity of quadriceps muscle neuromuscular electrical stimulation and strength recovery after total knee arthroplasty.
        Phys Ther. 2012; 92: 1187-1196
        • Vivodtzev I.
        • Debigare R.
        • Gagnon P.
        • et al.
        Functional and muscular effects of neuromuscular electrical stimulation in patients with severe COPD: a randomized clinical trial.
        Chest. 2012; 141: 716-725
        • Laufer Y.
        • Snyder-Mackler L.
        Response of male and female subjects after total knee arthroplasty to repeated neuromuscular electrical stimulation of the quadriceps femoris muscle.
        Am J Phys Med Rehabil. 2010; 89: 464-472
        • Maddocks M.
        • Nolan C.M.
        • Man W.D.
        • et al.
        Neuromuscular electrical stimulation to improve exercise capacity in patients with severe COPD: a randomised double-blind, placebo-controlled trial.
        Lancet Respir Med. 2016; 4: 27-36
        • Dirks M.L.
        • Hansen D.
        • Van Assche A.
        • Dendale P.
        • Van Loon L.J.
        Neuromuscular electrical stimulation prevents muscle wasting in critically ill comatose patients.
        Clin Sci (Lond). 2015; 128: 357-365
        • Weber-Carstens S.
        • Schneider J.
        • Wollersheim T.
        • et al.
        Critical illness myopathy and GLUT4: significance of insulin and muscle contraction.
        Am J Respir Crit Care Med. 2013; 187: 387-396
        • Poulsen J.B.
        • Rose M.H.
        • Moller K.
        • Perner A.
        • Jensen B.R.
        A novel noninvasive method for measuring fatigability of the quadriceps muscle in noncooperating healthy subjects.
        Biomed Res Int. 2015; 2015: 193493
        • Vivodtzev I.
        • Devost A.A.
        • Saey D.
        • et al.
        Severe and early quadriceps weakness in mechanically ventilated patients.
        Crit Care. 2014; 18: 431
        • Fitzgerald G.K.
        • Piva S.R.
        • Irrgang J.J.
        A modified neuromuscular electrical stimulation protocol for quadriceps strength training following anterior cruciate ligament reconstruction.
        J Orthop Sports Phys Ther. 2003; 33: 492-501
        • Segers J.
        • Hermans G.
        • Bruyninckx F.
        • Meyfroidt G.
        • Langer D.
        • Gosselink R.
        Feasibility of neuromuscular electrical stimulation in critically ill patients.
        J Crit Care. 2014; 29: 1082-1088
        • Delitto A.
        • Strube M.J.
        • Shulman A.D.
        • Minor S.D.
        A study of discomfort with electrical stimulation.
        Phys Ther. 1992; 72 (discussion 21-4): 410-421
        • Mayr W.
        • Krenn M.
        • Hofer C.
        Highlights from the 11th Vienna International Workshop On Functional Electrical Stimulation.
        Artif Organs. 2015; 39: 821-822
        • Vivodtzev I.
        • Rivard B.
        • Gagnon P.
        • et al.
        Tolerance and physiological correlates of neuromuscular electrical stimulation in COPD: a pilot study.
        PLoS One. 2014; 9: E94850
        • Maffiuletti N.A.
        • Herrero A.J.
        • Jubeau M.
        • Impellizzeri F.M.
        • Bizzini M.
        Differences in electrical stimulation thresholds between men and women.
        Ann Neurol. 2008; 63: 507-512
        • Maffiuletti N.A.
        • Morelli A.
        • Martin A.
        • et al.
        Effect of gender and obesity on electrical current thresholds.
        Muscle Nerve. 2011; 44: 202-207
        • Gagnon P.
        • Saey D.
        • Vivodtzev I.
        • et al.
        Impact of preinduced quadriceps fatigue on exercise response in chronic obstructive pulmonary disease and healthy subjects.
        J Appl Physiol (1985). 2009; 107: 832-840
        • Spector P.
        • Laufer Y.
        • Elboim Gabyzon M.
        • Kittelson A.
        • Stevens Lapsley J.
        • Maffiuletti N.A.
        Neuromuscular electrical stimulation therapy to restore quadriceps muscle function in patients after orthopaedic surgery: a novel structured approach.
        J Bone Joint Surg Am. 2016; 98: 2017-2024
        • Binder-Macleod S.A.
        • Halden E.E.
        • Jungles K.A.
        Effects of stimulation intensity on the physiological responses of human motor units.
        Med Sci Sports Exerc. 1995; 27: 556-565
        • Watson T.
        Electrotherapy: evidence-based practice.
        Churchill Livingstone, Edinburgh2008
        • Vaz Ma
        • Bortoluzzi Frasson V.
        Low-frequency pulsed current versus kilohertz-frequency alternating current: a narrative literature review.
        Arch Phys Med Rehabil. 2017 Dec 13; ([Epub ahead of print])