Advertisement
Original research| Volume 99, ISSUE 3, P423-432, March 2018

Effects of Respiratory Training on Heart Rate Variability and Baroreflex Sensitivity in Individuals With Chronic Spinal Cord Injury

Published:August 09, 2017DOI:https://doi.org/10.1016/j.apmr.2017.06.033

      Abstract

      Objective

      To evaluate the effects of pressure threshold respiratory training (RT) on heart rate variability and baroreflex sensitivity in persons with chronic spinal cord injury (SCI).

      Design

      Before-after intervention case-controlled clinical study.

      Setting

      SCI research center and outpatient rehabilitation unit.

      Participants

      Participants (N=44) consisted of persons with chronic SCI ranging from C2 to T11 who participated in RT (n=24), and untrained control subjects with chronic SCI ranging from C2 to T9 (n=20).

      Interventions

      A total of 21±2 RT sessions performed 5 days a week during a 4-week period using a combination of pressure threshold inspiratory and expiratory devices.

      Main Outcome Measures

      Forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), and beat-to-beat arterial blood pressure and heart rate changes during the 5-second-long maximum expiratory pressure maneuver (5s MEP) and the sit-up orthostatic stress test, acquired before and after the RT program.

      Results

      In contrast to the untrained controls, individuals in the RT group experienced significantly increased FVC and FEV1 (both P<.01) in association with improved quality of sleep, cough, and speech. Sympathetically (phase II) and parasympathetically (phase IV) mediated baroreflex sensitivity both significantly (P<.05) increased during the 5s MEP. During the orthostatic stress test, improved autonomic control over heart rate was associated with significantly increased sympathetic and parasympathetic modulation (low- and high-frequency change: P<.01 and P<.05, respectively).

      Conclusions

      Inspiratory-expiratory pressure threshold RT is a promising technique to positively affect both respiratory and cardiovascular dysregulation observed in persons with chronic SCI.

      Keywords

      List of abbreviations:

      AIS (American Spinal Injury Association Impairment Scale), BS (baroreflex sensitivity), FEV1 (forced expiratory volume in 1 second), 5s MEP (5-second maximum expiratory pressure maneuver), FVC (forced vital capacity), HF (high frequency), HRV (heart rate variability), LF (low frequency), RRI (R-R interval), RT (respiratory training), SBP (systolic blood pressure), SCI (spinal cord injury)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Archives of Physical Medicine and Rehabilitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • National Spinal Cord Injury Statistical Center
        Spinal cord injury (SCI) 2016 facts and figures at a glance.
        J Spinal Cord Med. 2016; 39: 493-494
        • Devivo M.J.
        Epidemiology of traumatic spinal cord injury: trends and future implications.
        Spinal Cord. 2012; 50: 365-372
        • Middleton J.W.
        • Dayton A.
        • Walsh J.
        • Rutkowski S.B.
        • Leong G.
        • Duong S.
        Life expectancy after spinal cord injury: a 50-year study.
        Spinal Cord. 2012; 50: 803-811
        • Garshick E.
        • Kelley A.
        • Cohen S.A.
        • et al.
        A prospective assessment of mortality in chronic spinal cord injury.
        Spinal Cord. 2005; 43: 408-416
        • Hitzig S.L.
        • Eng J.J.
        • Miller W.C.
        • Sakakibara B.M.
        • SCIRE Research Team
        An evidence-based review of aging of the body systems following spinal cord injury.
        Spinal Cord. 2011; 49: 684-701
        • Jensen M.P.
        • Truitt A.R.
        • Schomer K.G.
        • Yorkston K.M.
        • Baylor C.
        • Molton I.R.
        Frequency and age effects of secondary health conditions in individuals with spinal cord injury: a scoping review.
        Spinal Cord. 2013; 51: 882-892
        • Stolzmann K.L.
        • Gagnon D.R.
        • Brown R.
        • Tun C.G.
        • Garshick E.
        Longitudinal change in FEV1 and FVC in chronic spinal cord injury.
        Am J Respir Crit Care Med. 2008; 177: 781-786
        • Capoor J.
        • Stein A.B.
        Aging with spinal cord injury.
        Phys Med Rehabil Clin N Am. 2005; 16: 129-161
        • de Groot P.C.
        • Bleeker M.W.
        • van Kuppevelt D.H.
        • van der Woude L.H.
        • Hopman M.T.
        Rapid and extensive arterial adaptations after spinal cord injury.
        Arch Phys Med Rehabil. 2006; 87: 688-696
        • Stolzmann K.L.
        • Gagnon D.R.
        • Brown R.
        • Tun C.G.
        • Garshick E.
        Risk factors for chest illness in chronic spinal cord injury: a prospective study.
        Am J Phys Med Rehabil. 2010; 89: 576-583
        • Waddimba A.C.
        • Jain N.B.
        • Stolzmann K.
        • et al.
        Predictors of cardiopulmonary hospitalization in chronic spinal cord injury.
        Arch Phys Med Rehabil. 2009; 90: 193-200
        • Sin D.D.
        • Wu L.
        • Man S.F.
        The relationship between reduced lung function and cardiovascular mortality: a population-based study and a systematic review of the literature.
        Chest. 2005; 127: 1952-1959
        • Myers J.
        • Lee M.
        • Kiratli J.
        Cardiovascular disease in spinal cord injury: an overview of prevalence, risk, evaluation, and management.
        Am J Phys Med Rehabil. 2007; 86: 142-152
        • Koseoglu B.F.
        • Safer V.B.
        • Oken O.
        • Akselim S.
        Cardiovascular disease risk in people with spinal cord injury: is there a possible association between reduced lung function and increased risk of diabetes and hypertension?.
        Spinal Cord. 2017; 55: 87-93
        • Bauman W.A.
        • Spungen A.M.
        Coronary heart disease in individuals with spinal cord injury: assessment of risk factors.
        Spinal Cord. 2008; 46: 466-476
        • Bauman W.A.
        • Kahn N.N.
        • Grimm D.R.
        • Spungen A.M.
        Risk factors for atherogenesis and cardiovascular autonomic function in persons with spinal cord injury.
        Spinal Cord. 1999; 37: 601-616
        • Linn W.S.
        • Adkins R.H.
        • Gong Jr., H.
        • Waters R.L.
        Pulmonary function in chronic spinal cord injury: a cross-sectional survey of 222 southern California adult outpatients.
        Arch Phys Med Rehabil. 2000; 81: 757-763
        • De Burgh Daly M.
        Peripheral arterial chemoreceptors and respiratory-cardiovascular integration.
        Clarendon Pr, New York1997
        • Scher A.
        • O'Leary D.
        • Sheriff D.
        Arterial baroreceptor regulation of peripheral resistance and of cardiac performance.
        in: Persson P.B. Kirchheim H.R. Baroreceptor reflexes. Springer Berlin Heidelberg, Berlin1991: 75-125
        • Sala-Mercado J.A.
        • Moslehpour M.
        • Hammond R.L.
        • et al.
        Stimulation of the cardiopulmonary baroreflex enhances ventricular contractility in awake dogs: a mathematical analysis study.
        Am J Physiol Regul Integr Comp Physiol. 2014; 307: R455-R464
        • Lee L.Y.
        • Yu J.
        Sensory nerves in lung and airways.
        Compr Physiol. 2014; 4: 287-324
        • Shamsuzzaman A.S.
        • Somers V.K.
        Cardiorespiratory interactions in neural circulatory control in humans.
        Ann N Y Acad Sci. 2001; 940: 488-499
        • Walters B.C.
        • Hadley M.N.
        • Hurlbert R.J.
        • et al.
        Guidelines for the management of acute cervical spine and spinal cord injuries: 2013 update.
        Neurosurgery. 2013; 60: 82-91
        • Casha S.
        • Christie S.
        A systematic review of intensive cardiopulmonary management after spinal cord injury.
        J Neurotrauma. 2011; 28: 1479-1495
        • Frisbie J.H.
        Breathing and the support of blood pressure after spinal cord injury.
        Spinal Cord. 2005; 43: 406-407
        • Derrickson J.
        • Ciesla N.
        • Simpson N.
        • Imle P.C.
        A comparison of two breathing exercise programs for patients with quadriplegia.
        Phys Ther. 1992; 72: 763-769
        • Tamplin J.
        • Berlowitz D.J.
        A systematic review and meta-analysis of the effects of respiratory muscle training on pulmonary function in tetraplegia.
        Spinal Cord. 2014; 52: 175-180
        • Van Houtte S.
        • Vanlandewijck Y.
        • Kiekens C.
        • Spengler C.M.
        • Gosselink R.
        Patients with acute spinal cord injury benefit from normocapnic hyperpnoea training.
        J Rehabil Med. 2008; 40: 119-125
        • Zupan A.
        • Savrin R.
        • Erjavec T.
        • et al.
        Effects of respiratory muscle training and electrical stimulation of abdominal muscles on respiratory capabilities in tetraplegic patients.
        Spinal Cord. 1997; 35: 540-545
        • Gounden P.
        Progressive resistive loading on accessory expiratory muscles in tetraplegia.
        S Afr J Physiother. 1990; 42: 4-12
        • Litchke L.G.
        • Russian C.J.
        • Lloyd L.K.
        • Schmidt E.A.
        • Price L.
        • Walker J.L.
        Effects of respiratory resistance training with a concurrent flow device on wheelchair athletes.
        J Spinal Cord Med. 2008; 31: 65-71
        • Roth E.J.
        • Stenson K.W.
        • Powley S.
        • et al.
        Expiratory muscle training in spinal cord injury: a randomized controlled trial.
        Arch Phys Med Rehabil. 2010; 91: 857-861
        • Aslan S.C.
        • Randall D.C.
        • Krassioukov A.V.
        • Phillips A.
        • Ovechkin A.V.
        Respiratory training improves blood pressure regulation in individuals with chronic spinal cord injury.
        Arch Phys Med Rehabil. 2016; 97: 964-973
        • Gillis D.J.
        • Wouda M.
        • Hjeltnes N.
        Non-pharmacological management of orthostatic hypotension after spinal cord injury: a critical review of the literature.
        Spinal Cord. 2008; 46: 652-659
        • Mills P.B.
        • Fung C.K.
        • Travlos A.
        • Krassioukov A.
        Nonpharmacologic management of orthostatic hypotension: a systematic review.
        Arch Phys Med Rehabil. 2015; 96: 366-375.e6
        • Phillips A.A.
        • Krassioukov A.V.
        Contemporary cardiovascular concerns after spinal cord injury: mechanisms, maladaptations and management.
        J Neurotrauma. 2015; 32: 1927-1942
        • Berlowitz D.J.
        • Tamplin J.
        Respiratory muscle training for cervical spinal cord injury.
        Cochrane Database Syst Rev. 2013; 7: CD008507
        • Van Houtte S.
        • Vanlandewijck Y.
        • Gosselink R.
        Respiratory muscle training in persons with spinal cord injury: a systematic review.
        Respir Med. 2006; 100: 1886-1895
        • Kirshblum S.C.
        • Burns S.P.
        • Biering-Sorensen F.
        • et al.
        International standards for neurological classification of spinal cord injury (revised 2011).
        J Spinal Cord Med. 2011; 34: 535-546
        • Bos W.J.W.
        • van Goudoever J.
        • van Montfrans G.A.
        • van den Meiracker A.H.
        • Wesseling K.H.
        Reconstruction of brachial artery pressure from noninvasive finger pressure measurements.
        Circulation. 1996; 94: 1870-1875
        • R Core Team
        R: a language and environment for statistical computing.
        R Foundation for Statistical Computing, Vienna2012
        • Aslan S.C.
        • Randall D.C.
        • Donohue K.D.
        • et al.
        Blood pressure regulation in neurally intact human vs. acutely injured paraplegic and tetraplegic patients during passive tilt.
        Am J Physiol Regul Integr Comp Physiol. 2007; 292: R1146-R1157
        • Ovechkin A.
        • Vitaz T.
        • de Paleville D.T.
        • Aslan S.
        • McKay W.
        Evaluation of respiratory muscle activation in individuals with chronic spinal cord injury.
        Respir Physiol Neurobiol. 2010; 173: 171-178
        • Aslan S.C.
        • Chopra M.K.
        • McKay W.B.
        • Folz R.J.
        • Ovechkin A.V.
        Evaluation of respiratory muscle activation using respiratory motor control assessment (RMCA) in individuals with chronic spinal cord injury.
        J Vis Exp. 2013; : 50178
        • Ditterline B.E.
        • Aslan S.C.
        • Randall D.C.
        • Harkema S.J.
        • Ovechkin A.V.
        Baroreceptor reflex during forced expiratory maneuvers in individuals with chronic spinal cord injury.
        Respir Physiol Neurobiol. 2016; 229: 65-70
        • Porth C.J.
        • Bamrah V.S.
        • Tristani F.E.
        • Smith J.J.
        The Valsalva maneuver: mechanisms and clinical implications.
        Heart Lung. 1984; 13: 507-518
        • Smith S.A.
        • Stallard T.J.
        • Salih M.M.
        • Littler W.A.
        Can sinoaortic baroreceptor heart rate reflex sensitivity be determined from phase IV of the Valsalva manoeuvre?.
        Cardiovasc Res. 1987; 21: 422-427
        • Goldstein D.S.
        • Horwitz D.
        • Keiser H.R.
        Comparison of techniques for measuring baroreflex sensitivity in man.
        Circulation. 1982; 66: 432-439
        • Misra U.
        • Kalita J.
        Clinical neurophysiology.
        2nd ed. Elsevier, New Delhi2006
        • Novak P.
        Assessment of sympathetic index from the Valsalva maneuver.
        Neurology. 2011; 76: 2010-2016
        • Grimm D.R.
        • Almenoff P.L.
        • Bauman W.A.
        • De Meersman R.E.
        Baroreceptor sensitivity response to phase IV of the Valsalva maneuver in spinal cord injury.
        Clin Auton Res. 1998; 8: 111-118
        • Palmero H.A.
        • Caeiro T.F.
        • Iosa D.J.
        • Bas J.
        Baroreceptor reflex sensitivity index derived from phase 4 of the Valsalva maneuver.
        Hypertension. 1981; 3 (II-134-7)
        • Berntson G.G.
        • Bigger Jr., J.T.
        • Eckberg D.L.
        • et al.
        Heart rate variability: origins, methods, and interpretive caveats.
        Psychophysiology. 1997; 34: 623-648
        • Di Rienzo M.
        • Parati G.
        • Radaelli A.
        • Castiglioni P.
        Baroreflex contribution to blood pressure and heart rate oscillations: time scales, time-variant characteristics and nonlinearities.
        Philos Trans A Math Phys Eng Sci. 2009; 367: 1301-1318
        • Inoue K.
        • Miyake S.
        • Kumashiro M.
        • Ogata H.
        • Yoshimura O.
        Power spectral analysis of heart rate variability in traumatic quadriplegic humans.
        Am J Physiol. 1990; 258: H1722-H1726
        • Cooke W.H.
        • Hoag J.B.
        • Crossman A.A.
        • Kuusela T.A.
        • Tahvanainen K.U.
        • Eckberg D.L.
        Human responses to upright tilt: a window on central autonomic integration.
        J Physiol. 1999; 517: 617-628
        • Trang H.
        • Girard A.
        • Laude D.
        • Elghozi J.L.
        Short-term blood pressure and heart rate variability in congenital central hypoventilation syndrome (Ondine's curse).
        Clin Sci (Lond). 2005; 108: 225-230
        • Wecht J.M.
        • de Meersman R.E.
        • Weir J.P.
        • Spungen A.M.
        • Bauman W.A.
        Cardiac autonomic responses to progressive head-up tilt in individuals with paraplegia.
        Clin Auton Res. 2003; 13: 433-438
        • Vittinghoff E.
        Regression methods in biostatistics: linear, logistic, survival, and repeated measures models.
        2nd ed. Springer, New York2012
        • Roth E.J.
        • Nussbaum S.B.
        • Berkowitz M.
        • et al.
        Pulmonary function testing in spinal cord injury: correlation with vital capacity.
        Paraplegia. 1995; 33: 454-457
        • Jain N.B.
        • Brown R.
        • Tun C.G.
        • Gagnon D.
        • Garshick E.
        Determinants of forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), and FEV1/FVC in chronic spinal cord injury.
        Arch Phys Med Rehabil. 2006; 87: 1327-1333
        • Almenoff P.L.
        • Spungen A.M.
        • Lesser M.
        • Bauman W.A.
        Pulmonary function survey in spinal cord injury: influences of smoking and level and completeness of injury.
        Lung. 1995; 173: 297-306
        • Fishburn M.J.
        • Marino R.J.
        • Ditunno Jr., J.F.
        Atelectasis and pneumonia in acute spinal cord injury.
        Arch Phys Med Rehabil. 1990; 71: 197-200
        • Slonimski M.
        • Aguilera E.J.
        Atelectasis and mucus plugging in spinal cord injury: case report and therapeutic approaches.
        J Spinal Cord Med. 2001; 24: 284-288
        • Kihara M.
        • Mitsui M.
        • Nishikawa S.
        • Nishimoto K.
        • Takahashi M.
        Comparison of electrophysiologic and autonomic tests in sensory diabetic neuropathy.
        Clin Auton Res. 1998; 8: 213-220
        • Aminoff M.J.
        • Daroff R.B.
        Encyclopedia of the neurological sciences.
        2nd ed. Academic Pr/Elsevier, Waltham2014
        • Ori Z.
        • Monir G.
        • Weiss J.
        • Sayhouni X.
        • Singer D.H.
        Heart rate variability. Frequency domain analysis.
        Cardiol Clin. 1992; 10: 499-537
        • Elghozi J.L.
        • Laude D.
        • Girard A.
        Effects of respiration on blood pressure and heart rate variability in humans.
        Clin Exp Pharmacol Physiol. 1991; 18: 735-742
        • Novak V.
        • Spies J.M.
        • Novak P.
        • McPhee B.R.
        • Rummans T.A.
        • Low P.A.
        Hypocapnia and cerebral hypoperfusion in orthostatic intolerance.
        Stroke. 1998; 29: 1876-1881
        • Ogoh S.
        • Nakahara H.
        • Okazaki K.
        • Bailey D.M.
        • Miyamoto T.
        Cerebral hypoperfusion modifies the respiratory chemoreflex during orthostatic stress.
        Clin Sci (Lond). 2013; 125: 37-44
        • Iellamo F.
        Baroreflex control of heart rate during exercise: a topic of perennial conflict.
        J Appl Physiol. 2001; 90: 1184-1185
        • Jan Y.K.
        • Anderson M.
        • Soltani J.
        • Burns S.
        • Foreman R.D.
        Comparison of changes in heart rate variability and sacral skin perfusion in response to postural changes in people with spinal cord injury.
        J Rehabil Res Dev. 2013; 50: 203-214
        • Inoue K.
        • Ogata H.
        • Hayano J.
        • et al.
        Assessment of autonomic function in traumatic quadriplegic and paraplegic patients by spectral analysis of heart rate variability.
        J Auton Nerv Syst. 1995; 54: 225-234
        • Burgess D.E.
        • Hundley J.C.
        • Li S.G.
        • Randall D.C.
        • Brown D.R.
        First-order differential-delay equation for the baroreflex predicts the 0.4-Hz blood pressure rhythm in rats.
        Am J Physiol. 1997; 273: R1878-R1884
        • Studinger P.
        • Goldstein R.
        • Taylor J.A.
        Mechanical and neural contributions to hysteresis in the cardiac vagal limb of the arterial baroreflex.
        J Physiol. 2007; 583: 1041-1048
        • Stein P.K.
        • Barzilay J.I.
        Relationship of abnormal heart rate turbulence and elevated CRP to cardiac mortality in low, intermediate, and high-risk older adults.
        J Cardiovasc Electrophysiol. 2011; 22: 122-127
        • Tsuji H.
        • Larson M.G.
        • Venditti Jr., F.J.
        • et al.
        Impact of reduced heart rate variability on risk for cardiac events. The Framingham Heart Study.
        Circulation. 1996; 94: 2850-2855
        • Koutelou M.
        • Katsikis A.
        • Flevari P.
        • et al.
        Predictive value of cardiac autonomic indexes and MIBG washout in ICD recipients with mild to moderate heart failure.
        Ann Nucl Med. 2009; 23: 677-684
        • La Rovere M.T.
        • Pinna G.D.
        • Maestri R.
        • Sleight P.
        Clinical value of baroreflex sensitivity.
        Neth Heart J. 2013; 21: 61-63
        • Task Force of the European Society of Cardiology; North American Society of Pacing and Electrophysiology
        Heart rate variability: standards of measurement, physiological interpretation and clinical use.
        Circulation. 1996; 93: 1043-1065