Advertisement

Rehabilitation Interventions for Upper Limb Function in the First Four Weeks Following Stroke: A Systematic Review and Meta-Analysis of the Evidence

      Abstract

      Objective

      To investigate the therapeutic interventions reported in the research literature and synthesize their effectiveness in improving upper limb (UL) function in the first 4 weeks poststroke.

      Data Sources

      Electronic databases and trial registries were searched from inception until June 2016, in addition to searching systematic reviews by hand.

      Study Selection

      Randomized controlled trials (RCTs), controlled trials, and interventional studies with pre/posttest design were included for adults within 4 weeks of any type of stroke with UL impairment. Participants all received an intervention of any physiotherapeutic or occupational therapeutic technique designed to address impairment or activity of the affected UL, which could be compared with usual care, sham, or another technique.

      Data Extraction

      Two reviewers independently assessed eligibility of full texts, and methodological quality of included studies was assessed using the Cochrane Risk of Bias Tool.

      Data Synthesis

      A total of 104 trials (83 RCTs, 21 nonrandomized studies) were included (N=5225 participants). Meta-analyses of RCTs only (20 comparisons) and narrative syntheses were completed. Key findings included significant positive effects for modified constraint-induced movement therapy (mCIMT) (standardized mean difference [SMD]=1.09; 95% confidence interval [CI], .21–1.97) and task-specific training (SMD=.37; 95% CI, .05–.68). Evidence was found to support supplementary use of biofeedback and electrical stimulation. Use of Bobath therapy was not supported.

      Conclusions

      Use of mCIMT and task-specific training was supported, as was supplementary use of biofeedback and electrical simulation, within the acute phase poststroke. Further high-quality studies into the initial 4 weeks poststroke are needed to determine therapies for targeted functional UL outcomes.

      Keywords

      List of abbreviations:

      ADL (activities of daily living), CI (confidence interval), mCIMT (modified constraint-induced movement therapy), MD (mean difference), RCT (randomized controlled trial), ROM (range of motion), SMD (standardized mean difference), UL (upper limb)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Archives of Physical Medicine and Rehabilitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Australian Bureau of Statistics
        Profiles of disability, Australia: stroke.
        Australian Bureau of Statistics, Canberra2009
        • Langhorne P.
        • Bernhardt J.
        • Kwakkel G.
        Stroke rehabilitation.
        Lancet. 2011; 377: 1693-1702
        • Australian Institute of Health and Welfare
        Stroke and its management in Australia: an update.
        Australian Institute of Health and Welfare, Canberra2013: 9-10
        • Faria-Fortini I.
        • Michaelsen S.M.
        • Cassiano J.G.
        • Teixeira-Salmela L.F.
        Upper extremity function in stroke subjects: relationships between the International Classification of Functioning, Disability, and Health domains.
        J Hand Ther. 2011; 24: 257-265
        • Benjamin E.J.
        • Blaha M.J.
        • Chiuve S.E.
        • et al.
        Heart disease and stroke statistics—2017 update: a report from the American Heart Association.
        Circulation. 2017; 135: e146-e603
        • Winstein C.J.
        • Stein J.
        • Arena R.
        • et al.
        Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association.
        Stroke. 2016; 47: 98-169
        • Houwink A.
        • Nijland R.H.
        • Geurts A.C.
        • Kwakkel G.
        Functional recovery of the paretic upper limb after stroke: who regains hand capacity?.
        Arch Phys Med Rehabil. 2013; 94: 839-844
        • World Health Organization
        Comprehensive ICF core set for stroke.
        Nottwill, ICF Research Branch, 2013
        • Pollock A.
        • Farmer S.E.
        • Brady M.C.
        • et al.
        Interventions for improving upper limb function after stroke.
        Cochrane Database Syst Rev. 2014; : CD010820
        • Carmichael S.T.
        Cellular and molecular mechanisms of neural repair after stroke: making waves.
        Ann Neurol. 2006; 59: 735-742
        • McDonnell M.N.
        • Koblar S.
        • Ward N.S.
        • Rothwell J.C.
        • Hordacre B.
        • Ridding M.C.
        An investigation of cortical neuroplasticity following stroke in adults: is there evidence for a critical window for rehabilitation?.
        BMC Neurol. 2015; 15: 109-113
        • Buma F.
        • Kwakkel G.
        • Ramsey N.
        Understanding upper limb recovery after stroke.
        Restor Neurol Neurosci. 2013; 31: 707-722
        • Hayward K.
        • Brauer S.
        Dose of arm activity training during acute and subacute rehabilitation post stroke: a systematic review of the literature.
        Clin Rehabil. 2015; 29: 1234-1243
        • Serrada I.
        • McDonnell M.N.
        • Hillier S.
        What is current practice for upper limb rehabilitation in the acute hospital setting following stroke? A systematic review.
        NeuroRehabilitation. 2016; 39: 1-8
        • Bernhardt J.
        • Chan J.
        • Nicola I.
        • Collier J.M.
        Little therapy, little physical activity: rehabilitation within the first 14 days of organized stroke unit care.
        J Rehabil Med. 2007; 39: 43-48
        • Moher D.
        • Shamseer L.
        • Clarke M.
        • et al.
        Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement.
        Syst Rev. 2015; 4: 1-9
      1. PROSPERO Centre for Reviews and Dissemination. PROSPERO: International Prospective Register of Systematic Reviews. 2015. Available at: http://www.crd.york.ac.uk/PROSPERO/. Accessed April 20, 2015.

        • Ropper A.
        • Brown R.
        Adams and Victor's principles of neurology.
        8th ed. McGraw-Hill Medical Publishing Division, New York2005
      2. The Cochrane Collaboration. Glossary 2015. Available at: http://community-archive.cochrane.org/glossary/. Accessed June 2, 2015.

      3. Higgins J, Altman D, Sterne J. Chapter 7: selecting studies and collecting data. 2011. Available at: http://handbook.cochrane.org/. Accessed April 20, 2015.

      4. Higgins J, Altman D, Sterne J. Chapter 8: assessing risk of bias in included studies. 2011. Available at: http://handbook.cochrane.org/. Accessed April 20, 2015.

      5. Higgins J, Altman D, Sterne J. Chapter 2: Preparing a Cochrane review. 2011. Available at: http://handbook.cochrane.org/. Accessed April 20, 2015.

      6. Higgins J, Altman D, Sterne J. Chapter 9: Analysing data and undertaking meta-analyses. 2011. Available at: http://handbook.cochrane.org/. Accessed April 20, 2015.

        • Murphy M.A.
        • Resteghini C.
        • Feys P.
        • Lamers I.
        An overview of systematic reviews on upper extremity outcome measures after stroke.
        BMC Neurol. 2015; 15: 29
        • Hillier S.
        • Inglis-Jassiem G.
        Rehabilitation for community-dwelling people with stroke: home or centre based? A systematic review.
        Int J Stroke. 2010; 5: 178-186
        • Langhorne P.
        • Coupar F.
        • Pollock A.
        Motor recovery after stroke: a systematic review.
        Lancet Neurol. 2009; 8: 741-754
        • Veerbeek J.M.
        • van Wegen E.
        • van Peppen R.
        • et al.
        What is the evidence for physical therapy poststroke? A systematic review and meta-analysis.
        PLoS One. 2014; 9: 1-33
        • Poole J.L.
        • Whitney S.L.
        • Hangeland N.
        • Baker C.
        The effectiveness of inflatable pressure splints on motor function in stroke patients.
        Occup Ther J Res. 1990; 10: 360-366
        • Roper T.A.
        • Redford S.
        • Tallis R.C.
        Intermittent compression for the treatment of the oedematous hand in hemiplegic stroke: a randomized controlled trial.
        Age Ageing. 1999; 28: 9-13
        • Crow J.L.
        • Lincoln N.B.
        • De Weerdt N.
        • Nouri F.M.
        The effectiveness of EMG biofeedback in the treatment of arm function after stroke.
        Int Disabil Stud. 1989; 11: 155-160
        • Morris J.H.
        • van Wijck F.
        • Joice S.
        • Ogston S.A.
        • Cole I.
        • MacWalter R.S.
        A comparison of bilateral and unilateral upper-limb task training in early poststroke rehabilitation: a randomized controlled trial.
        Arch Phys Med Rehabil. 2008; 89: 1237-1245
        • Gelber D.A.
        • Josefczyk P.B.
        • Herrman D.
        • Good D.C.
        • Verhulst S.J.
        Comparison of two therapy approaches in the rehabilitation of the pure motor hemiparetic stroke patient.
        J Neurol Rehabil. 1995; 9: 191-196
        • Langhammer B.
        • Stanghelle J.K.
        Can physiotherapy after stroke based on the Bobath concept result in improved quality of movement compared with the motor relearning programme.
        Physiother Res Int. 2011; 16: 69-80
        • Li J.X.
        • Zhang H.S.
        • Mi S.Y.
        Effects of early rehabilitation training on motor functions of upper and lower extremities and activities of daily living in patients with hemiplegia after stroke.
        J Navy Med. 2002; 23: 35-37
        • Li H.F.
        • Wang J.H.
        • Feng J.C.
        • Gao F.
        Application of motor relearning therapy in the early rehabilitation of stroke: a randomized controlled comparison [Chinese].
        Chin J Clin Rehabil. 2005; 9: 1-3
        • Pan C.H.
        • He J.Q.
        • Pu S.X.
        • Wan X.L.
        • Gao C.
        Effects of early rehabilitation therapy on the motor function of limbs and ability of daily living in patients with hemiplegia after stroke [Chinese].
        Chin J Clin Rehabil. 2004; 8: 2404-2405
        • Peng H.L.
        Influence of facilitation techniques on early active rehabilitation in upper extremity, hand and walk function of hemiplegia patients with stroke [Chinese].
        Chin J Clin Rehabil. 2002; 6: 1255-1256
        • van Vliet P.M.
        • Lincoln N.B.
        • Foxall A.
        Comparison of Bobath based and movement science based treatment for stroke: a randomised controlled trial.
        J Neurol Neurosurg Psychiatry. 2005; 76: 503-508
        • Xue J.
        • Bai L.
        • Guo Q.R.
        • Yang C.R.
        • Lu J.
        Efficacy of early intervention of motor relearning program on post-stroke hemiplemia: a randomized controlled observation.
        Neural Regen Res. 2006; 1: 277-279
        • Liu J.J.
        • Li F.S.
        • Liu G.H.
        Motor relearning program and Bobath method improve motor function of the upper extremities in patients with stroke [Chinese].
        Neural Regen Res. 2006; 1: 850-852
        • Horn A.I.
        • Fontes S.V.
        • de Carvalho S.M.
        • et al.
        [Kinesiotherapy prevents shoulder pain in hemiplegic/paretic patients on sub-acute stage post-stroke].
        Arq Neuropsiquiatr. 2003; 61 ([Portuguese]): 768-771
        • Wolf S.L.
        • Winstein C.J.
        • Miller J.P.
        • et al.
        Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial.
        JAMA. 2006; 296: 2095-2104
        • Bergheim A.
        Modified constraint induced movement therapy versus traditional physiotherapy after cerebral stroke: a pilot study [Norwegian].
        Fysioterapeuten. 2010; 77: 16-22
        • Boake C.
        • Noser E.A.
        • Ro T.
        • et al.
        Constraint-induced movement therapy during early stroke rehabilitation.
        Neurorehabil Neural Repair. 2007; 21: 14-24
        • Dromerick A.W.
        • Edwards D.F.
        • Hahn M.
        Does the application of constraint-induced movement therapy during acute rehabilitation reduce arm impairment after ischemic stroke?.
        Stroke. 2000; 31: 2984-2989
        • Dromerick A.W.
        • Lang C.E.
        • Birkenmeier R.L.
        • et al.
        Very Early Constraint-Induced Movement during Stroke Rehabilitation (VECTORS): a single-center RCT.
        Neurology. 2009; 73: 195-201
        • El-Helow M.R.
        • Zamzam M.L.
        • Fathalla M.M.
        • et al.
        Efficacy of modified constraint-induced movement therapy in acute stroke.
        Eur J Phys Rehabil Med. 2015; 51: 371-379
        • Page S.J.
        • Levine P.
        • Leonard A.C.
        Modified constraint-induced therapy in acute stroke: a randomized controlled pilot study.
        Neurorehabil Neural Repair. 2005; 19: 27-32
        • Singh P.
        • Pradhan B.
        Study to assess the effectiveness of modified constraint-induced movement therapy in stroke subjects: a randomized controlled trial.
        Ann Indian Acad Neurol. 2013; 16: 180-184
        • Thrane G.
        • Askim T.
        • Stock R.
        • et al.
        Efficacy of constraint-induced movement therapy in early stroke rehabilitation: a randomized controlled multisite trial.
        Neurorehabil Neural Repair. 2015; 29: 517-525
        • Yoon J.A.
        • Koo B.I.
        • Shin M.J.
        • Shin Y.B.
        • Ko H.Y.
        • Shin Y.I.
        Effect of constraint-induced movement therapy and mirror therapy for patients with subacute stroke.
        Ann Rehabil Med. 2014; 38: 458-466
        • English C.
        • Hillier S.
        • Stiller K.
        Incidence and severity of shoulder pain does not increase with the use of circuit class therapy during inpatient stroke rehabilitation: a controlled trial.
        Aust J Physiother. 2008; 54: 41-46
        • Alon G.
        • Levitt A.F.
        • McCarthy P.A.
        Functional electrical stimulation (FES) may modify the poor prognosis of stroke survivors with severe motor loss of the upper extremity—a preliminary study.
        Am J Phys Med Rehabil. 2008; 87: 627-636
        • Alon G.
        • Levitt A.F.
        • McCarthy P.A.
        Functional electrical stimulation enhancement of upper extremity functional recovery during stroke rehabilitation: a pilot study.
        Neurorehabil Neural Repair. 2007; 21: 207-215
        • Chae J.
        • Bethoux F.
        • Bohinc T.
        • Dobos L.
        • Davis T.
        • Friedl A.
        Neuromuscular stimulation for upper extremity motor and functional recovery in acute hemiplegia.
        Stroke. 1998; 29: 975-979
        • Dorsch S.
        • Ada L.
        • Canning C.G.
        EMG-triggered electrical stimulation is a feasible intervention to apply to multiple arm muscles in people early after stroke, but does not improve strength and activity more than usual therapy: a randomized feasibility trial.
        Clin Rehabil. 2014; 28: 482-490
        • Faghri P.D.
        The effects of neuromuscular stimulation-induced muscle contraction versus elevation on hand edema in CVA patients.
        J Hand Ther. 1997; 10: 29-34
        • Fil A.
        • Armutlu K.
        • Atay A.O.
        • Kerimoglu U.
        • Elibol B.
        The effect of electrical stimulation in combination with Bobath techniques in the prevention of shoulder subluxation in acute stroke patients.
        Clin Rehabil. 2011; 25: 51-59
        • Francisco G.
        • Chae J.
        • Chawla H.
        • et al.
        Electromyogram-triggered neuromuscular stimulation for improving the arm function of acute stroke survivors: a randomized pilot study.
        Arch Phys Med Rehabil. 1998; 79: 570-575
        • Hsu S.S.
        • Hu M.H.
        • Luh J.J.
        • Wang Y.H.
        • Yip P.K.
        • Hsieh C.L.
        Dosage of neuromuscular electrical stimulation: is it a determinant of upper limb functional improvement in stroke patients?.
        J Rehabil Med. 2012; 44: 125-130
        • Hsu S.S.
        • Hu M.H.
        • Wang Y.H.
        • Yip P.K.
        • Chiu J.W.
        • Hsieh C.L.
        Dose-response relation between neuromuscular electrical stimulation and upper-extremity function in patients with stroke.
        Stroke. 2010; 41: 821-824
        • Krukowska J.
        • Dalewski M.
        • Czernicki J.
        [Evaluation of effectiveness of local cryotherapy in patients with post-stroke spasticity].
        Wiad Lek. 2014; 67 ([Polish]): 71-75
        • Linn S.L.
        • Granat M.H.
        • Lees K.R.
        Prevention of shoulder subluxation after stroke with electrical stimulation.
        Stroke. 1999; 30: 963-968
        • Liu G.F.
        • Zhou Z.X.
        Effect of neuromuscular electrical stimulation in various modes on the rehabilitation of upper limb function in patients with hemiplegia [Chinese].
        Chin J Clin Rehabil. 2004; 8: 4424-4425
        • Mohamed Faisal C.K.
        • Prakash P.N.
        • Ajith S.
        Efficacy of functional neuromuscular electrical stimulation (FNMES) in the improvement of hand functions in acute stroke survivals.
        Nitte Univ J Health Sci. 2012; 2: 16-21
        • Powell J.
        • Pandyan A.D.
        • Granat M.
        • Cameron M.
        • Stott D.J.
        Electrical stimulation of wrist extensors in poststroke hemiplegia.
        Stroke. 1999; 30: 1384-1389
        • Malhotra S.
        • Rosewilliam S.
        • Hermens H.
        • Roffe C.
        • Jones P.
        • Pandyan A.D.
        A randomized controlled trial of surface neuromuscular electrical stimulation applied early after acute stroke: effects on wrist pain, spasticity and contractures.
        Clin Rehabil. 2013; 27: 579-590
        • Yozbatiran N.
        • Donmez B.
        • Kayak N.
        • Bozan O.
        Electrical stimulation of wrist and fingers for sensory and functional recovery in acute hemiplegia.
        Clin Rehabil. 2006; 20: 4-11
        • Berner Y.N.
        • Kimchi O.L.
        • Spokoiny V.
        • Finkeltov B.
        The effect of electric stimulation treatment on the functional rehabilitation of acute geriatric patients with stroke—a preliminary study.
        Arch Gerontol Geriatr. 2004; 39: 125-132
        • Pages I.H.
        • Atabas E.
        Modulated midfrequency electrotherapy on patients with upper limb motor dysfunction after stroke [German].
        Physikalische Medizin Rehabilitationsmedizin Kurortmedizin. 2004; 14: 295-299
        • Umarova R.M.
        • Chernikova L.A.
        • Tanashian M.M.
        • Krotenkova M.V.
        [Neuromuscular electrostimulation in acute ischemic stroke].
        Vopr Kurortol Fizioter Lech Fiz Kult. 2005; 1 ([Russian]): 6-8
        • Chanubol R.
        • Wongphaet P.
        • Chavanich N.
        • et al.
        A randomized controlled trial of cognitive sensory motor training therapy on the recovery of arm function in acute stroke patients.
        Clin Rehabil. 2012; 26: 1096-1104
        • Chen J.
        • Liang C.
        • Shaw F.
        Facilitation of sensory and motor recovery by thermal intervention for the hemiplegic upper limb in acute stroke patients: a single-blind randomized clinical trial.
        Stroke. 2005; 36: 2665-2669
        • Feys H.
        • De Weerdt W.
        • Verbeke G.
        • et al.
        Early and repetitive stimulation of the arm can substantially improve the long-term outcome after stroke: a 5-year follow-up study of a randomized trial.
        Stroke. 2004; 35: 924-929
        • Feys H.M.
        • De Weerdt W.J.
        • Selz B.E.
        • et al.
        Effect of a therapeutic intervention for the hemiplegic upper limb in the acute phase after stroke: a single-blind, randomized, controlled multicenter trial.
        Stroke. 1998; 29: 785-792
        • Klaiput A.
        • Kitisomprayoonkul W.
        Increased pinch strength in acute and subacute stroke patients after simultaneous median and ulnar sensory stimulation.
        Neurorehabil Neural Repair. 2009; 23: 351-356
        • Repsaite V.
        • Vainoras A.
        • Berskiene K.
        • Baltaduoniene D.
        • Daunoraviciene A.
        • Sendzikaite E.
        The effect of differential training-based occupational therapy on hand and arm function in patients after stroke: Results of the pilot study.
        Neurol Neurochir Pol. 2015; 49: 150-155
        • Bento V.F.
        • Cruz V.T.
        • Ribeiro D.D.
        • Cunha J.P.
        The vibratory stimulus as a neurorehabilitation tool for stroke patients: proof of concept and tolerability test.
        NeuroRehabilitation. 2012; 30: 287-293
        • Jaraczewska E.
        • Long C.
        Kinesio taping in stroke: improving functional use of the upper extremity in hemiplegia.
        Top Stroke Rehabil. 2006; 13: 31-42
        • Bell A.
        • Muller M.
        Effects of Kinesio Tape to reduce hand edema in acute stroke.
        Top Stroke Rehabil. 2013; 20: 283-288
        • Rabadi M.
        • Galgano M.
        • Lynch D.
        • Akerman M.
        • Lesser M.
        • Volpe B.
        A pilot study of activity-based therapy in the arm motor recovery post stroke: a randomized controlled trial.
        Clin Rehabil. 2008; 22: 1071-1082
        • Bartolo M.
        • De Nunzio A.M.
        • Sebastiano F.
        • et al.
        Arm weight support training improves functional motor outcome and movement smoothness after stroke.
        Funct Neurol. 2014; 29: 15-21
        • Buschfort R.
        • Hess A.
        • Hesse S.
        [Arm laboratory for the severely affected arm after stroke: concept and first results].
        Z Gerontol Geriatr. 2009; 42 ([German]): 470-472
        • Cousins E.
        • Ward A.
        • Roffe C.
        • Rimington L.
        • Pandyan A.
        Does low-dose botulinum toxin help the recovery of arm function when given early after stroke? A phase II randomized controlled pilot study to estimate effect size.
        Clin Rehabil. 2010; 24: 501-513
        • Samuelkamaleshkumar S.
        • Reethajanetsureka S.
        • Pauljebaraj P.
        • Benshamir B.
        • Padankatti S.M.
        • David J.A.
        Mirror therapy enhances motor performance in the paretic upper limb after stroke: a pilot randomized controlled trial.
        Arch Phys Med Rehabil. 2014; 95: 2000-2005
        • Dohle C.
        • Pullen J.
        • Nakaten A.
        • Kust J.
        • Rietz C.
        • Karbe H.
        Mirror therapy promotes recovery from severe hemiparesis: a randomized controlled trial.
        Neurorehabil Neural Repair. 2009; 23: 209-217
        • Yeldan I.H.
        • Nsinoglu B.E.
        • Akinci B.
        • Tarakci E.L.
        • Baybas S.R.
        • Ozdincler A.
        The effects of very early mirror therapy on functional improvement of the upper extremity in acute stroke patients.
        J Phys Ther Sci. 2015; 27: 3519-3524
        • Jun E.M.
        • Roh Y.H.
        • Kim M.J.
        The effect of music-movement therapy on physical and psychological states of stroke patients.
        J Clin Nurs. 2013; 22: 22-31
        • Kim H.J.
        • Lee Y.
        • Sohng K.Y.
        Effects of bilateral passive range of motion exercise on the function of upper extremities and activities of daily living in patients with acute stroke.
        J Phys Ther Sci. 2014; 26: 149-156
        • Lynch D.
        • Ferraro M.
        • Krol J.
        • Trudell C.M.
        • Christos P.
        • Volpe B.T.
        Continuous passive motion improves shoulder joint integrity following stroke.
        Clin Rehabil. 2005; 19: 594-599
        • Kondo I.
        • Hosokawa K.
        • Soma M.
        • Iwata M.
        • Maltais D.
        Protocol to prevent shoulder-hand syndrome after stroke.
        Arch Phys Med Rehabil. 2001; 82: 1619-1623
        • Lannin N.A.
        • Cusick A.
        • McCluskey A.
        • Herbert R.D.
        Effects of splinting on wrist contracture after stroke—a randomized controlled trial.
        Stroke. 2007; 38: 111-116
        • Burgar C.G.
        • Lum P.S.
        • Erika Scremin A.M.
        • et al.
        Robot-assisted upper-limb therapy in acute rehabilitation setting following stroke: Department of Veterans Affairs multisite clinical trial.
        J Rehabil Res Dev. 2011; 48: 445-458
        • Fasoli S.E.
        • Krebs H.I.
        • Ferraro M.
        • Hogan N.
        • Volpe B.T.
        Does shorter rehabilitation limit potential recovery poststroke?.
        Neurorehabil Neural Repair. 2004; 18: 88-94
        • Givon-Mayo R.
        • Simons E.
        • Ohry A.
        • Karpin H.
        • Israely S.
        • Carmeli E.
        A preliminary investigation of error enhancement of the velocity component in stroke patients' reaching movements.
        Int J Ther Rehabil. 2014; 21: 160-168
        • Hong W.
        • Ran C.F.
        • Wei C.
        Development of a movement training machine with active and passive movement training function.
        J Clin Rehabil Tissue Eng Res. 2010; 14: 2391-2394
        • Masiero S.
        • Celia A.
        • Armani M.
        • Rosati G.
        A novel robot device in rehabilitation of post-stroke hemiplegic upper limbs.
        Aging Clin Exp Res. 2006; 18: 531-535
        • Masiero S.
        • Celia A.
        • Rosati G.
        • Armani M.
        Robotic-assisted rehabilitation of the upper limb after acute stroke.
        Arch Phys Med Rehabil. 2007; 88: 142-149
        • Masiero S.
        • Armani M.
        • Rosati G.
        Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: focused review and results of new randomized controlled trial.
        J Rehabil Res Dev. 2011; 48: 355-366
        • Masiero S.
        • Armani M.
        • Ferlini G.
        • Rosati G.
        • Rossi A.
        Randomized trial of a robotic assistive device for the upper extremity during early inpatient stroke rehabilitation.
        Neurorehabil Neural Repair. 2014; 28: 377-386
        • Volpe B.T.
        • Krebs H.I.
        • Hogan N.
        • Edelstein L.
        • Diels C.
        • Aisen M.
        A novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation.
        Neurology. 2000; 54: 1938-1944
        • Aisen M.L.
        • Krebs H.I.
        • Hogan N.
        • McDowell F.
        • Volpe B.T.
        The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke.
        Arch Neurol. 1997; 54: 443-446
        • Fukuda H.
        • Morishita T.
        • Ogata T.
        • et al.
        Tailor-made rehabilitation approach using multiple types of hybrid assistive limb robots for acute stroke patients: a pilot study.
        Assist Technol. 2016; 28: 53-56
        • Sale P.
        • Lombardi V.
        • Franceschini M.
        Hand robotics rehabilitation: feasibility and preliminary results of a robotic treatment in patients with hemiparesis.
        Stroke Res Treat. 2012; 2012: 1-5
        • Appel C.
        • Mayston M.
        • Perry L.
        Feasibility study of a randomized controlled trial protocol to examine clinical effectiveness of shoulder strapping in acute stroke patients.
        Clin Rehabil. 2011; 25: 833-843
        • Chatterjee S.
        • Hayner K.A.
        • Arumugam N.
        • et al.
        The California tri-pull taping method in the treatment of shoulder subluxation after stroke: a randomized clinical trial.
        North Am J Med Sci. 2016; 8: 175-182
        • Griffin A.
        • Bernhardt J.
        Strapping the hemiplegic shoulder prevents development of pain during rehabilitation: a randomized controlled trial.
        Clin Rehabil. 2006; 20: 287-295
        • Hanger H.C.
        • Whitewood P.
        • Brown G.
        • et al.
        A randomized controlled trial of strapping to prevent post-stroke shoulder pain.
        Clin Rehabil. 2000; 14: 370-380
        • Hartwig M.
        • Gelbrich G.
        • Griewing B.
        Functional orthosis in shoulder joint subluxation after ischaemic brain stroke to avoid post-hemiplegic shoulder-hand syndrome: a randomized clinical trial.
        Clin Rehabil. 2012; 26: 807-816
        • Pandian J.D.
        • Kaur P.
        • Arora R.
        • et al.
        Shoulder taping reduces injury and pain in stroke patients: randomized controlled trial.
        Neurology. 2013; 80: 528-532
        • Zorowitz R.D.
        • Idank D.
        • Ikai T.
        • Hughes M.B.
        • Johnston M.V.
        Shoulder subluxation after stroke: a comparison of four supports.
        Arch Phys Med Rehabil. 1995; 76: 763-771
        • Ada L.
        • Goddard E.
        • McCully J.
        • Stavrinos T.
        • Bampton J.
        Thirty minutes of positioning reduces the development of shoulder external rotation contracture after stroke: a randomized controlled trial.
        Arch Phys Med Rehabil. 2005; 86: 230-234
        • Gustafsson L.
        • McKenna K.
        A programme of static positional stretches does not reduce hemiplegic shoulder pain or maintain shoulder range of motion—a randomized controlled trial.
        Clin Rehabil. 2006; 20: 277-286
        • Winstein C.J.
        • Rose D.K.
        • Tan S.M.
        • Lewthwaite R.
        • Chui H.C.
        • Azen S.P.
        A randomized controlled comparison of upper-extremity rehabilitation strategies in acute stroke: a pilot study of immediate and long-term outcomes.
        Arch Phys Med Rehabil. 2004; 85: 620-628
        • Bai Y.L.
        • Hu Y.S.
        • Wu Y.
        • et al.
        Long-term 3-stage rehabilitation intervention alleviates spasticity of the elbows, fingers, and plantar flexors and improves activities of daily living in ischemic stroke patients: a randomized, controlled trial.
        Neuroreport. 2014; 25: 998-1005
        • Cowles T.
        • Clark A.
        • Mares K.
        • Peryer G.
        • Stuck R.
        • Pomeroy V.
        Observation-to-imitate plus practice could add little to physical therapy benefits within 31 days of stroke: translational randomized controlled trial.
        Neurorehabil Neural Repair. 2013; 27: 173-182
        • Harris J.E.
        • Eng J.J.
        • Miller W.C.
        • Dawson A.S.
        A self-administered Graded Repetitive Arm Supplementary Program (GRASP) improves arm function during inpatient stroke rehabilitation: a multi-site randomized controlled trial.
        Stroke. 2009; 40: 2123-2128
        • Liu J.
        • Wang W.
        • Fu H.
        Effects of early rehabilitation on motor function of upper and lower extremities and activities of daily living in patients with hemiplegia after stroke.
        Chin J Clin Healthc. 2006; 9: 443-445
        • Liu K.P.
        • Chan C.C.
        Pilot randomized controlled trial of self-regulation in promoting function in acute poststroke patients.
        Arch Phys Med Rehabil. 2014; 95: 1262-1267
        • Nelles G.
        • Jentzen W.
        • Jueptner M.
        • Muller S.
        • Diener H.C.
        Arm training induced brain plasticity in stroke studied with serial positron emission tomography.
        Neuroimage. 2001; 13: 1146-1154
        • Rodgers H.
        • Mackintosh J.
        • Price C.
        • et al.
        Does an early increased-intensity interdisciplinary upper limb therapy programme following acute stroke improve outcome?.
        Clin Rehabil. 2003; 17: 579-589
        • Xu B.H.
        • Yu R.Q.
        • Yu W.
        • Xie B.
        • Huang Y.X.
        [Effects of early rehabilitation on activities of daily living and complications in acute stroke patients].
        Beijing Da Xue Xue Bao. 2004; 36 ([Chinese]): 75-78
        • Hubbard I.J.
        • Carey L.M.
        • Budd T.W.
        • et al.
        A randomized controlled trial of the effect of early upper-limb training on stroke recovery and brain activation.
        Neurorehabil Neural Repair. 2015; 29: 703-713
        • Zhu L.
        • Song W.Q.
        • Liu L.
        Observation on the efficacy of early active rehabilitation training for hemiplegic upper limb functional recovery in patients with stroke [Chinese].
        Chin J Cerebrovasc Dis. 2008; 5: 145-149
        • Takako M.
        • Ayako T.
        • Takako I.
        • Yukari H.
        • Shinji N.
        Increasing upper-limb joint range of motion in post-stroke hemiplegic patients by daily hair-brushing.
        Br J Neurosci Nurs. 2015; 11: 112-117
        • Andrews A.W.
        • Bohannon R.W.
        Short-term recovery of limb muscle strength after acute stroke.
        Arch Phys Med Rehabil. 2003; 84: 125-130
        • Waddell K.J.
        • Birkenmeier R.L.
        • Moore J.L.
        • Hornby T.G.
        • Lang C.E.
        Feasibility of high-repetition, task-specific training for individuals with upper-extremity paresis.
        Am J Occup Ther. 2014; 68: 444-453
        • Hayward K.S.
        • Kuys S.S.
        • Barker R.N.
        • Brauer S.G.
        Can stroke survivors with severe upper arm disability achieve a clinically important change in arm function during inpatient rehabilitation? A multicentre, prospective, observational study.
        NeuroRehabilitation. 2014; 35: 17-23
        • Cameirao M.S.
        • Bermudez I.
        • Badia S.
        • Duarte E.
        • Verschure P.
        Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system.
        Restor Neurol Neurosci. 2011; 29: 287-298
      7. Cameirao MS, Badia SBI, Oller ED, Verschure P. Using a multi-task adaptive VR system for upper limb rehabilitation in the acute phase of stroke. In: Proceedings from the Virtual Rehabilitation; August 25-27, 2008; Vancouver, Canada. Abstract 359.

        • Kwon J.S.
        • Park M.J.
        • Yoon I.J.
        • Park S.H.
        Effects of virtual reality on upper extremity function and activities of daily living performance in acute stroke: a double-blind randomized clinical trial.
        NeuroRehabilitation. 2012; 31: 379-385
        • Yin C.W.
        • Sien N.Y.
        • Ying L.A.
        • Chung S.
        • Leng D.T.
        Virtual reality for upper extremity rehabilitation in early stroke: a pilot randomized controlled trial.
        Clin Rehabil. 2014; 28: 1107-1114
        • Joo L.Y.
        • Yin T.S.
        • Xu D.
        • et al.
        A feasibility study using interactive commercial off-the-shelf computer gaming in upper limb rehabilitation in patients after stroke.
        J Rehabil Med. 2010; 42: 437-441
        • National Stroke Foundation
        Clinical guidelines for stroke management.
        Australian Government: National Health and Medical Research Council, Melbourne2010
        • Sirtori V.
        • Corbetta D.
        • Moja L.
        • Gatti R.
        Constraint-induced movement therapy for upper extremities in stroke patients.
        Cochrane Database Syst Rev. 2009; : CD004433
        • Lynch E.A.
        • Luker J.A.
        • Cadilhac D.A.
        • Hillier S.L.
        Inequities in access to rehabilitation: exploring how acute stroke unit clinicians decide who to refer to rehabilitation.
        Disabil Rehabil. 2016; 38: 1415-1424
        • Kleim J.A.
        • Jones T.A.
        Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage.
        J Speech Lang Hear Res. 2008; 51: 225-239