Advertisement

Ecological Momentary Assessment of Pain, Fatigue, Depressive, and Cognitive Symptoms Reveals Significant Daily Variability in Multiple Sclerosis

      Abstract

      Objective

      To describe the daily variability and patterns of pain, fatigue, depressed mood, and cognitive function in persons with multiple sclerosis (MS).

      Design

      Repeated-measures observational study of 7 consecutive days of home monitoring, including ecological momentary assessment (EMA) of symptoms. Multilevel mixed models were used to analyze data.

      Setting

      General community.

      Participants

      Ambulatory adults (N=107) with MS recruited through the University of Michigan and surrounding community.

      Interventions

      Not applicable.

      Main Outcome Measure

      EMA measures of pain, fatigue, depressed mood, and cognitive function rated on a 0 to 10 scale, collected 5 times a day for 7 days.

      Results

      Cognitive function and depressed mood exhibited more stable within-person patterns than pain and fatigue, which varied considerably within person. All symptoms increased in intensity across the day (all P<.02), with fatigue showing the most substantial increase. Notably, this diurnal increase varied by sex and age; women showed a continuous increase from wake to bedtime, whereas fatigue plateaued after 7 pm for men (wake–bed B=1.04, P=.004). For the oldest subgroup, diurnal increases were concentrated to the middle of the day compared with younger subgroups, which showed an earlier onset of fatigue increase and sustained increases until bed time (wake–3 pm B=.04, P=.01; wake–7 pm B=.03, P=.02). Diurnal patterns of cognitive function varied by education; those with advanced college degrees showed a more stable pattern across the day, with significant differences compared with those with bachelor-level degrees in the evening (wake–7 pm B=−.47, P=.02; wake–bed B=−.45, P=.04).

      Conclusions

      Findings suggest that chronic symptoms in MS are not static, even over a short time frame; rather, symptoms—fatigue and pain in particular—vary dynamically across and within days. Incorporation of EMA methods should be considered in the assessment of these chronic MS symptoms to enhance assessment and treatment strategies.

      Keywords

      List of abbreviations:

      BPA (Brief Pain Inventory), EMA (ecological momentary assessment), EOD (end-of-day), MS (multiple sclerosis), PROMIS (Patient-Reported Outcomes Measurement Information System)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Archives of Physical Medicine and Rehabilitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hauser S.L.
        • Oksenberg J.R.
        The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration.
        Neuron. 2006; 52: 61-76
        • Noseworthy J.H.
        Progress in determining the causes and treatment of multiple sclerosis.
        Nature. 1999; 399: A40-A47
        • Noseworthy J.H.
        • Lucchinetti C.
        • Rodriguez M.
        • Weinshenker B.G.
        Multiple sclerosis.
        N Engl J Med. 2000; 343: 938-952
        • Ehde D.M.
        • Gibbons L.E.
        • Chwastiak L.
        • Bombardier C.H.
        • Sullivan M.D.
        • Kraft G.H.
        Chronic pain in a large community sample of persons with multiple sclerosis.
        Mult Scler. 2003; 9: 605-611
        • Ehde D.M.
        • Osborne T.L.
        • Hanley M.A.
        • Jensen M.P.
        • Kraft G.H.
        The scope and nature of pain in persons with multiple sclerosis.
        Mult Scler. 2006; 12: 629-638
        • Ehde D.M.
        • Osborne T.L.
        • Jensen M.P.
        Chronic pain in persons with multiple sclerosis.
        Phys Med Rehabil Clin N Am. 2005; 16: 503-512
        • Hirsh A.T.
        • Turner A.P.
        • Ehde D.M.
        • Haselkorn J.K.
        Prevalence and impact of pain in multiple sclerosis: physical and psychologic contributors.
        Arch Phys Med Rehabil. 2009; 90: 646-651
        • Kos D.
        • Kerckhofs E.
        • Nagels G.
        • D'Hooghe M.B.
        • Ilsbroukx S.
        Origin of fatigue in multiple sclerosis: review of the literature.
        Neurorehabil Neural Repair. 2008; 22: 91-100
        • Krupp L.B.
        Fatigue in multiple sclerosis: definition, pathophysiology and treatment.
        CNS Drugs. 2003; 17: 225-234
        • Krupp L.B.
        • Alvarez L.A.
        • LaRocca N.G.
        • Scheinberg L.C.
        Fatigue in multiple sclerosis.
        Arch Neurol. 1988; 45: 435-437
        • Krupp L.B.
        • Christodoulou C.
        Fatigue in multiple sclerosis.
        Curr Neurol Neurosci Rep. 2001; 1: 294-298
        • Krupp L.B.
        • Serafin D.J.
        • Christodoulou C.
        Multiple sclerosis-associated fatigue.
        Expert Rev Neurother. 2010; 10: 1437-1447
        • MacAllister W.S.
        • Krupp L.B.
        Multiple sclerosis-related fatigue.
        Phys Med Rehabil Clin N Am. 2005; 16: 483-502
        • Joy J.E.
        • Johnston R.B.
        Multiple sclerosis: current status and strategies for the future.
        National Academies Press, The National Academies, Washington, DC2001
        • Hadjimichael O.
        • Kerns R.D.
        • Rizzo M.A.
        • Cutter G.
        • Vollmer T.
        Persistent pain and uncomfortable sensations in persons with multiple sclerosis.
        Pain. 2007; 127: 35-41
        • Khan F.
        • Pallant J.
        Chronic pain in multiple sclerosis: prevalence, characteristics, and impact on quality of life in an Australian community cohort.
        J Pain. 2007; 8: 614-623
        • Amato M.P.
        • Ponziani G.
        • Siracusa G.
        • Sorbi S.
        Cognitive dysfunction in early-onset multiple sclerosis: a reappraisal after 10 years.
        Arch Neurol. 2001; 58: 1602-1606
        • Bagert B.
        • Camplair P.
        • Bourdette D.
        Cognitive dysfunction in multiple sclerosis: natural history, pathophysiology and management.
        CNS Drugs. 2002; 16: 445-455
        • Chiaravalloti N.D.
        • DeLuca J.
        Cognitive impairment in multiple sclerosis.
        Lancet Neurol. 2008; 7: 1139-1151
        • Huijbregts S.C.
        • Kalkers N.F.
        • de Sonneville L.M.
        • de Groot V.
        • Reuling I.E.
        • Polman C.H.
        Differences in cognitive impairment of relapsing remitting, secondary, and primary progressive MS.
        Neurology. 2004; 63: 335-339
        • Kesselring J.
        • Klement U.
        Cognitive and affective disturbances in multiple sclerosis.
        J Neurol. 2001; 248: 180-183
        • Lazeron R.H.
        • Boringa J.B.
        • Schouten M.
        • et al.
        Brain atrophy and lesion load as explaining parameters for cognitive impairment in multiple sclerosis.
        Mult Scler. 2005; 11: 524-531
        • Arnett P.A.
        • Randolph J.J.
        Longitudinal course of depression symptoms in multiple sclerosis.
        J Neurol Neurosurg Psychiatry. 2006; 77: 606-610
        • Brochet B.
        • Deloire M.S.
        • Ouallet J.C.
        • et al.
        Pain and quality of life in the early stages after multiple sclerosis diagnosis: a 2-year longitudinal study.
        Clin J Pain. 2009; 25: 211-217
        • Khan F.
        • Amatya B.
        • Kesselring J.
        Longitudinal 7-year follow-up of chronic pain in persons with multiple sclerosis in the community.
        J Neurol. 2013; 260: 2005-2015
        • Amato M.P.
        • Zipoli V.
        • Portaccio E.
        Multiple sclerosis-related cognitive changes: a review of cross-sectional and longitudinal studies.
        J Neurol Sci. 2006; 245: 41-46
        • Piras M.R.
        • Magnano I.
        • Canu E.D.
        • et al.
        Longitudinal study of cognitive dysfunction in multiple sclerosis: neuropsychological, neuroradiological, and neurophysiological findings.
        J Neurol Neurosurg Psychiatry. 2003; 74: 878-885
        • Denney D.R.
        • Lynch S.G.
        • Parmenter B.A.
        A 3-year longitudinal study of cognitive impairment in patients with primary progressive multiple sclerosis: speed matters.
        J Neurol Sci. 2008; 267: 129-136
        • Randolph J.J.
        • Arnett P.A.
        Depression and fatigue in relapsing-remitting MS: the role of symptomatic variability.
        Mult Scler J. 2005; 11: 186-190
        • Kroencke D.C.
        • Denney D.R.
        • Lynch S.G.
        Depression during exacerbations in multiple sclerosis: the importance of uncertainty.
        Mult Scler. 2001; 7: 237-242
        • Kroencke D.C.
        • Denney D.R.
        Stress and coping in multiple sclerosis: exacerbation, remission and chronic subgroups.
        Mult Scler. 1999; 5: 89-93
        • Kasser S.L.
        • Goldstein A.
        • Wood P.K.
        • Sibold J.
        Symptom variability, affect and physical activity in ambulatory persons with multiple sclerosis: understanding patterns and time-bound relationships.
        Disabil Health J. 2016; 10: 207-213
        • Kim E.
        • Lovera J.
        • Schaben L.
        • Melara J.
        • Bourdette D.
        • Whitham R.
        Novel method for measurement of fatigue in multiple sclerosis: Real-Time Digital Fatigue Score.
        J Rehabil Res Dev. 2010; 47: 477-484
        • Heine M.
        • van den Akker L.E.
        • Blikman L.
        • et al.
        Real-time assessment of fatigue in patients with multiple sclerosis: how does it relate to commonly used self-report fatigue questionnaires?.
        Arch Phys Med Rehabil. 2016; 97: 1887-1894
        • Powell D.J.
        • Liossi C.
        • Schlotz W.
        • Moss-Morris R.
        Tracking daily fatigue fluctuations in multiple sclerosis: ecological momentary assessment provides unique insights.
        J Behav Med. 2017 Mar 9; ([Epub ahead of print])
        • Shiffman S.
        • Stone A.A.
        • Hufford M.R.
        Ecological momentary assessment.
        Annu Rev Clin Psychol. 2008; 4: 1-32
        • Stone A.A.
        • Shiffman S.
        Ecological momentary assessment (EMA) in behavioral medicine.
        Ann Behav Med. 1994; 16: 199-202
      1. Qualtrics. Qualtrics security white paper: why should I trust Qualtrics with my sensitive data? Version 1.0. 2011. Available at: https://www.uea.ac.uk/documents/241631/839342/Qualtrics+Whitepaper.pdf/697dcd7c-2b86-4d41-927e-edfff291e02b. Accessed July 3, 2014.

        • Kratz A.L.
        • Braley T.J.
        • Foxen-Craft E.
        • Scott E.
        • Murphy 3rd, J.
        • Murphy S.L.
        How do pain, fatigue, depressive, and cognitive symptoms relate to well-being and social and physical functioning in the daily lives of in individuals with multiple sclerosis?.
        Arch Phys Med Rehabil. 2017 July 17; ([Epub ahead of print])
        • Krupp L.B.
        • LaRocca N.G.
        • Muir-Nash J.
        • Steinberg A.D.
        The Fatigue Severity Scale. Application to patients with multiple sclerosis and systemic lupus erythematosus.
        Arch Neurol. 1989; 46: 1121-1123
        • Learmonth Y.C.
        • Dlugonski D.
        • Pilutti L.A.
        • Sandroff B.M.
        • Klaren R.
        • Motl R.W.
        Psychometric properties of the Fatigue Severity Scale and the Modified Fatigue Impact Scale.
        J Neurol Sci. 2013; 331: 102-107
        • Lerdal A.
        • Johansson S.
        • Kottorp A.
        • von Koch L.
        Psychometric properties of the Fatigue Severity Scale: Rasch analyses of responses in a Norwegian and a Swedish MS cohort.
        Mult Scler J. 2010; 16: 733-741
        • Mills R.J.
        • Young C.A.
        • Nicholas R.S.
        • Pallant J.F.
        • Tennant A.
        Rasch analysis of the Fatigue Severity Scale in multiple sclerosis.
        Mult Scler. 2009; 15: 81-87
        • Mills R.J.
        • Nicholas R.S.
        • Malik O.
        • Young C.A.
        Rasch analysis of the fatigue severity scale in multiple sclerosis.
        Eur J Neurol. 2007; 14: 285
        • Kroenke K.
        • Spitzer R.L.
        • Williams J.B.
        The PHQ-9: validity of a brief depression severity measure.
        J Gen Intern Med. 2001; 16: 606-613
        • Amtmann D.
        • Kim J.
        • Chung H.
        • et al.
        Comparing CESD-10, PHQ-9, and PROMIS depression instruments in individuals with multiple sclerosis.
        Rehabil Psychol. 2014; 59: 220-229
        • Sjonnesen K.
        • Berzins S.
        • Fiest K.M.
        • et al.
        Evaluation of the 9-item Patient Health Questionnaire (PHQ-9) as an assessment instrument for symptoms of depression in patients with multiple sclerosis.
        Postgrad Med. 2012; 124: 69-77
        • Cleeland C.S.
        Measurement of pain by subjective report.
        in: Advances in pain research and therapy. Vol 12. Raven Press, New York1989: 391-403
        • Cleeland C.S.
        • Ryan K.M.
        Pain assessment: global use of the Brief Pain Inventory.
        Ann Acad Med Singapore. 1994; 23: 129-138
        • Osborne T.L.
        • Jensen M.P.
        • Ehde D.M.
        • Hanley M.A.
        • Kraft G.
        Psychosocial factors associated with pain intensity, pain-related interference, and psychological functioning in persons with multiple sclerosis and pain.
        Pain. 2007; 127: 52-62
        • Osborne T.L.
        • Raichle K.A.
        • Jensen M.P.
        • Ehde D.M.
        • Kraft G.
        The reliability and validity of pain interference measures in persons with multiple sclerosis.
        J Pain Symptom Manage. 2006; 32: 217-229
        • Von Korff M.
        • Ormel J.
        • Keefe F.J.
        • Dworkin S.F.
        Grading the severity of chronic pain.
        Pain. 1992; 50: 133-149
        • Sullivan J.J.L.
        • Edgley K.
        • Dehoux E.
        A survey of multiple sclerosis. Part 1: perceived cognitive problems and compensatory strategy use.
        Can J Rehabil. 1990; 4: 99-105
        • Mendoza T.R.
        • Wang X.S.
        • Cleeland C.S.
        • et al.
        The rapid assessment of fatigue severity in cancer patients: use of the Brief Fatigue Inventory.
        Cancer. 1999; 85: 1186-1196
        • Wolfe F.
        • Hawley D.J.
        • Wilson K.
        The prevalence and meaning of fatigue in rheumatic disease.
        J Rheumatol. 1996; 23: 1407-1417
        • Cella D.
        • Riley W.
        • Stone A.
        • et al.
        The Patient-Reported Outcomes Measurement Information System (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005-2008.
        J Clin Epidemiol. 2010; 63: 1179-1194
        • Cook K.F.
        • Jensen S.E.
        • Schalet B.D.
        • et al.
        PROMIS measures of pain, fatigue, negative affect, physical function, and social function demonstrated clinical validity across a range of chronic conditions.
        J Clin Epidemiol. 2016; 73: 89-102
        • Rothrock N.E.
        • Hays R.D.
        • Spritzer K.
        • Yount S.E.
        • Riley W.
        • Cella D.
        Relative to the general US population, chronic diseases are associated with poorer health-related quality of life as measured by the Patient-Reported Outcomes Measurement Information System (PROMIS).
        J Clin Epidemiol. 2010; 63: 1195-1204
        • Cella D.
        • Lai J.S.
        • Nowinski C.J.
        • et al.
        Neuro-QOL: brief measures of health-related quality of life for clinical research in neurology.
        Neurology. 2012; 78: 1860-1867
        • Gershon R.C.
        • Lai J.S.
        • Bode R.
        • et al.
        Neuro-QOL: quality of life item banks for adults with neurological disorders: item development and calibrations based upon clinical and general population testing.
        Qual Life Res. 2012; 21: 475-486
        • Schneider S.
        • Choi S.W.
        • Junghaenel D.U.
        • Schwartz J.E.
        • Stone A.A.
        Psychometric characteristics of daily diaries for the Patient-Reported Outcomes Measurement Information System (PROMIS(R)): a preliminary investigation.
        Qual Life Res. 2012; 22: 1859-1869
        • Chen W.H.
        • Revicki D.A.
        • Amtmann D.
        • Jensen M.P.
        • Keefe F.J.
        • Cella D.
        Development and Analysis of PROMIS Pain Intensity Scale.
        Qual Life Res. 2012; 20: 18
        • Cook K.F.
        • Schalet B.D.
        • Kallen M.A.
        • Rutsohn J.P.
        • Cella D.
        Establishing a common metric for self-reported pain: linking BPI Pain Interference and SF-36 Bodily Pain Subscale scores to the PROMIS Pain Interference metric.
        Qual Life Res. 2015; 24: 2305-2318
        • Christodoulou C.
        • Schneider S.
        • Junghaenel D.U.
        • Broderick J.E.
        • Stone A.A.
        Measuring daily fatigue using a brief scale adapted from the Patient-Reported Outcomes Measurement Information System (PROMIS (R)).
        Qual Life Res. 2014; 23: 1245-1253
        • Noonan V.K.
        • Cook K.F.
        • Bamer A.M.
        • Choi S.W.
        • Kim J.
        • Amtmann D.
        Measuring fatigue in persons with multiple sclerosis: creating a crosswalk between the Modified Fatigue Impact Scale and the PROMIS Fatigue Short Form.
        Qual Life Res. 2012; 21: 1123-1133
        • Stone A.A.
        • Broderick J.E.
        • Junghaenel D.U.
        • Schneider S.
        • Schwartz J.E.
        PROMIS fatigue, pain intensity, pain interference, pain behavior, physical function, depression, anxiety, and anger scales demonstrate ecological validity.
        J Clin Epidemiol. 2016; 74: 194-206
        • Singer J.D.
        • Willett J.B.
        Applied longitudinal data analysis: modeling change and event occurrence.
        Oxford University Press, New York2003
        • Mullins L.L.
        • Cote M.P.
        • Fuemmeler B.F.
        • Jean V.M.
        • Beatty W.W.
        • Paul R.H.
        Illness intrusiveness, uncertainty, and distress in individuals with multiple sclerosis.
        Rehabil Psychol. 2001; 46: 139-153
        • Dilorenzo T.A.
        • Becker-Feigeles J.
        • Halper J.
        • Picone M.A.
        A qualitative investigation of adaptation in older individuals with multiple sclerosis.
        Disabil Rehabil. 2008; 30: 1088-1097
        • Eldadah B.A.
        Fatigue and fatigability in older adults.
        PM R. 2010; 2: 406-413
        • Murphy S.L.
        • Kratz A.L.
        Activity pacing in daily life: a within-day analysis.
        Pain. 2014; 155: 2630-2637
        • Sumowski J.F.
        • Wylie G.R.
        • Deluca J.
        • Chiaravalloti N.
        Intellectual enrichment is linked to cerebral efficiency in multiple sclerosis: functional magnetic resonance imaging evidence for cognitive reserve.
        Brain. 2010; 133: 362-374
        • Sumowski J.F.
        • Chiaravalloti N.
        • Wylie G.
        • Deluca J.
        Cognitive reserve moderates the negative effect of brain atrophy on cognitive efficiency in multiple sclerosis.
        J Int Neuropsychol Soc. 2009; 15: 606-612
        • Sumowski J.F.
        • Leavitt V.M.
        Cognitive reserve in multiple sclerosis.
        Mult Scler. 2013; 19: 1122-1127
        • Schneider S.
        • Stone A.A.
        • Schwartz J.E.
        • Broderick J.E.
        Peak and end effects in patients' daily recall of pain and fatigue: a within-subjects analysis.
        J Pain. 2011; 12: 228-235
        • Stone A.A.
        • Schwartz J.E.
        • Broderick J.E.
        • Shiffman S.S.
        Variability of momentary pain predicts recall of weekly pain: a consequence of the peak (or salience) memory heuristic.
        Pers Soc Psychol B. 2005; 31: 1340-1346
        • Stone A.A.
        • Broderick J.E.
        • Kaell A.T.
        • DelesPaul P.A.
        • Porter L.E.
        Does the peak-end phenomenon observed in laboratory pain studies apply to real-world pain in rheumatoid arthritics?.
        J Pain. 2000; 1: 212-217
        • Kratz A.L.
        • Murphy S.L.
        • Braley T.J.
        Pain, fatigue, and cognitive symptoms are temporally associated within but not across days in multiple sclerosis.
        Arch Phys Med Rehabil. 2017; 98: 2151-2158
        • Heapy A.
        • Dziura J.
        • Buta E.
        • Goulet J.
        • Kulas J.F.
        • Kerns R.D.
        Using multiple daily pain ratings to improve reliability and assay sensitivity: how many is enough?.
        J Pain. 2014; 15: 1360-1365
        • Kratz A.L.
        • Ehde D.M.
        • Bombardier C.H.
        • Kalpakjian C.Z.
        • Hanks R.A.
        Pain acceptance decouples the momentary associations between pain, pain interference, and physical activity in the daily lives of people with chronic pain and spinal cord injury.
        J Pain. 2016; 18: 319-331
        • Murphy S.L.
        • Smith D.M.
        • Clauw D.J.
        • Alexander N.B.
        The impact of momentary pain and fatigue on physical activity in women with osteoarthritis.
        Arthritis Rheum. 2008; 59: 849-856
        • Allen K.D.
        The value of measuring variability in osteoarthritis pain.
        J Rheumatol. 2007; 34: 2132-2133