Advertisement
Original research| Volume 98, ISSUE 3, P415-424, March 2017

Intermittent Hypoxia and Locomotor Training Enhances Dynamic but Not Standing Balance in Patients With Incomplete Spinal Cord Injury

Published:October 01, 2016DOI:https://doi.org/10.1016/j.apmr.2016.09.114

      Abstract

      Objective

      To test the effect of combined intermittent hypoxia (IH) and body weight–supported treadmill training (BWSTT) on standing and dynamic balance in persons with incomplete spinal cord injury (iSCI).

      Design

      Randomized, triple-blind, placebo-controlled study.

      Setting

      Rehabilitation medical centers.

      Participants

      Study participants (N=35) with chronic iSCI with American Spinal Injury Association grades C and D (>1y postinjury) were randomly assigned to either IH plus BWSTT (n=18) or continued normoxia (placebo) plus BWSTT protocol (n=17).

      Interventions

      Participants received either IH (alternating 1.5min 9% inspired O2 with 1.5min 21% inspired O2, 15 cycles per day) or continued normoxia (21% O2) combined with 45 minutes of BWSTT for 5 consecutive days, followed by 3 times per week IH or normoxia plus BWSTT, for 3 additional weeks.

      Main Outcome Measures

      Standing balance (normalized jerk and root-mean-square [RMS]) and dynamic balance (turning duration, cadence in a turn, and turn-to-sit duration) were assessed before and after IH and normoxia protocol by means of instrumented sway and instrumented timed Up and Go test.

      Results

      There was no significant difference in standing balance between interventions for both normalized jerk and RMS instrumented sway components (both P>.05). There was a significantly faster cadence (P<.001), turning duration (P<.001), and turn-to-sit duration (P=.001) in subjects receiving IH plus BWSTT, compared with placebo.

      Conclusions

      A 4-week protocol of IH combined with locomotor training improves dynamic, but not standing, balance in persons with iSCI.

      Keywords

      List of abbreviations:

      ASIA (American Spinal Injury Association), BBS (Berg Balance Scale), BWSTT (body weight–supported treadmill training), CI (confidence interval), IH (intermittent hypoxia), IQR (interquartile range), iSCI (incomplete spinal cord injury), SCI (spinal cord injury), RMS (root-mean-square), TUG (timed Up and Go)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Archives of Physical Medicine and Rehabilitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dietz V.
        • Colombo G.
        • Jensen L.
        • Baumgartner L.
        Locomotor capacity of spinal cord in paraplegic patients.
        Ann Neurol. 1995; 37: 574-582
        • Ditunno P.L.
        • Patrick M.
        • Stineman M.
        • Ditunno J.F.
        Who wants to walk? Preferences for recovery after SCI: a longitudinal and cross-sectional study.
        Spinal Cord. 2008; 46: 500-506
        • Scivoletto G.
        • Romanelli A.
        • Mariotti A.
        • et al.
        Clinical factors that affect walking level and performance in chronic spinal cord lesion patients.
        Spine. 2008; 33: 259-264
        • Barbeau H.
        • Ladouceur M.
        • Norman K.E.
        • Pépin A.
        • Leroux A.
        Walking after spinal cord injury: evaluation, treatment, and functional recovery.
        Arch Phys Med Rehabil. 1999; 80: 225-235
        • Phonthee S.
        • Saengsuwan J.
        • Amatachaya S.
        Falls in independent ambulatory patients with spinal cord injury: incidence, associated factors and levels of ability.
        Spinal Cord. 2013; 51: 365-368
        • Brotherton S.S.
        • Krause J.S.
        • Nietert P.J.
        Falls in individuals with incomplete spinal cord injury.
        Spinal Cord. 2007; 45: 37-40
        • Amatachaya S.
        • Wannapakhe J.
        • Arrayawichanon P.
        • Siritarathiwat W.
        • Wattanapun P.
        Functional abilities, incidences of complications and falls of patients with spinal cord injury 6 months after discharge.
        Spinal Cord. 2011; 49: 520-524
        • Wirz M.
        • Muller R.
        • Bastiaenen C.
        Falls in persons with spinal cord injury: validity and reliability of the Berg Balance Scale.
        Neurorehabil Neural Repair. 2010; 24: 70-77
        • Tansey K.E.
        Neural plasticity and locomotor recovery after spinal cord injury.
        PM R. 2010; 2: S220-S226
        • Fouad K.
        • Tetzlaff W.
        Rehabilitative training and plasticity following spinal cord injury.
        Exp Neurol. 2012; 235: 91-99
        • Edgerton V.R.
        • de Leon R.D.
        • Tillakaratne N.
        • Recktenwald M.R.
        • Hodgson J.A.
        • Roy R.R.
        Use-dependent plasticity in spinal stepping and standing.
        Adv Neurol. 1997; 72: 233-247
        • Weishaupt N.
        • Li S.
        • Di Pardo A.
        • Sipione S.
        • Fouad K.
        Synergistic effects of BDNF and rehabilitative training on recovery after cervical spinal cord injury.
        Behav Brain Res. 2013; 239: 31-42
        • Wernig A.
        • Muller S.
        • Nanassy A.
        • Cagol E.
        Laufband therapy based on ‘rules of spinal locomotion’ is effective in spinal cord injured persons.
        Eur J Neurosci. 1995; 7: 823-829
        • Wirz M.
        • Zemon D.H.
        • Rupp R.
        • et al.
        Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial.
        Arch Phys Med Rehabil. 2005; 86: 672-680
        • Dietz V.
        Body weight supported gait training: from laboratory to clinical setting.
        Brain Res Bull. 2008; 76: 459-463
        • Dobkin B.
        • Apple D.
        • Barbeau H.
        • et al.
        Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI.
        Neurology. 2006; 66: 484-493
        • Alexeeva N.
        • Sames C.
        • Jacobs P.L.
        • et al.
        Comparison of training methods to improve walking in persons with chronic spinal cord injury: a randomized clinical trial.
        J Spinal Cord Med. 2011; 34: 362-379
        • Harkema S.J.
        • Schmidt-Read M.
        • Lorenz D.J.
        • Edgerton V.R.
        • Behrman A.L.
        Balance and ambulation improvements in individuals with chronic incomplete spinal cord injury using locomotor training-based rehabilitation.
        Arch Phys Med Rehabil. 2012; 93: 1508-1517
        • Thuret S.
        • Moon L.D.
        • Gage F.H.
        Therapeutic interventions after spinal cord injury. Nature reviews.
        Neuroscience. 2006; 7: 628-643
        • Edgerton V.R.
        • Kim S.J.
        • Ichiyama R.M.
        • Gerasimenko Y.P.
        • Roy R.R.
        Rehabilitative therapies after spinal cord injury.
        J Neurotrauma. 2006; 23: 560-570
        • Lovett-Barr M.R.
        • Satriotomo I.
        • Muir G.D.
        • et al.
        Repetitive intermittent hypoxia induces respiratory and somatic motor recovery after chronic cervical spinal injury.
        J Neurosci. 2012; 32: 3591-3600
        • Prosser-Loose E.J.
        • Hassan A.
        • Mitchell G.S.
        • Muir G.D.
        Delayed intervention with intermittent hypoxia and task training improves forelimb function in a rat model of cervical spinal injury.
        J Neurotrauma. 2015; 32: 1403-1412
        • Mitchell G.S.
        • Baker T.L.
        • Nanda S.A.
        • et al.
        Invited review: Intermittent hypoxia and respiratory plasticity.
        J Appl Physiol (1985). 2001; 90: 2466-2475
        • Hayes H.B.
        • Jayaraman A.
        • Herrmann M.
        • Mitchell G.S.
        • Rymer W.Z.
        • Trumbower R.D.
        Daily intermittent hypoxia enhances walking after chronic spinal cord injury: a randomized trial.
        Neurology. 2014; 82: 104-113
        • Trumbower R.D.
        • Jayaraman A.
        • Mitchell G.S.
        • Rymer W.Z.
        Exposure to acute intermittent hypoxia augments somatic motor function in humans with incomplete spinal cord injury.
        Neurorehabil Neural Repair. 2012; 26: 163-172
        • Navarrete-Opazo A.
        • Alcayaga J.
        • Sepulveda O.
        • Rojas E.
        • Astudillo C.
        Repetitive intermittent hypoxia and locomotor training enhances walking function in incomplete spinal cord injury subjects: a randomized, triple-blind, placebo-controlled clinical trial.
        J Neurotrauma. 2016 Jun 21; ([Epub ahead of print])
        • Baker-Herman T.L.
        • Fuller D.D.
        • Bavis R.W.
        • et al.
        BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia.
        Nat Neurosci. 2004; 7: 48-55
        • Berchtold N.C.
        • Chinn G.
        • Chou M.
        • Kesslak J.P.
        • Cotman C.W.
        Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus.
        Neuroscience. 2005; 133: 853-861
        • Gomez-Pinilla F.
        • Ying Z.
        • Roy R.R.
        • Molteni R.
        • Edgerton V.R.
        Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity.
        J Neurophysiol. 2002; 88: 2187-2195
        • Barde Y.A.
        Neurotrophins: a family of proteins supporting the survival of neurons.
        Prog Clin Biol Res. 1994; 390: 45-56
        • Lindsay R.M.
        Neurotrophic growth factors and neurodegenerative diseases: therapeutic potential of the neurotrophins and ciliary neurotrophic factor.
        Neurobiol Aging. 1994; 15: 249-251
        • Lewin G.R.
        Neurotrophins and the specification of neuronal phenotype.
        Philos Trans R Soc Lond B Biol Sci. 1996; 351: 405-411
        • Alsina B.
        • Vu T.
        • Cohen-Cory S.
        Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF.
        Nat Neurosci. 2001; 4: 1093-1101
        • Forrest G.F.
        • Lorenz D.J.
        • Hutchinson K.
        • et al.
        Ambulation and balance outcomes measure different aspects of recovery in individuals with chronic, incomplete spinal cord injury.
        Arch Phys Med Rehabil. 2012; 93: 1553-1564
        • Musselman K.E.
        • Fouad K.
        • Misiaszek J.E.
        • Yang J.F.
        Training of walking skills overground and on the treadmill: case series on individuals with incomplete spinal cord injury.
        Phys Ther. 2009; 89: 601-611
        • Lemay J.F.
        • Nadeau S.
        Standing balance assessment in ASIA D paraplegic and tetraplegic participants: concurrent validity of the Berg Balance Scale.
        Spinal Cord. 2010; 48: 245-250
        • Datta S.
        • Lorenz D.J.
        • Morrison S.
        • Ardolino E.
        • Harkema S.J.
        A multivariate examination of temporal changes in Berg Balance Scale items for patients with ASIA Impairment Scale C and D spinal cord injuries.
        Arch Phys Med Rehabil. 2009; 90: 1208-1217
        • Duarte M.
        • Freitas S.M.
        Revision of posturography based on force plate for balance evaluation.
        Rev Bras Fisioter. 2010; 14: 183-192
        • Kejonen P.
        • Kauranen K.
        Reliability and validity of standing balance measurements with a motion analysis system.
        Physiotherapy. 2002; 88: 25-32
        • Patrick J.H.
        Case for gait analysis as part of the management of incomplete spinal cord injury.
        Spinal Cord. 2003; 41: 479-482
        • Mancini M.
        • King L.
        • Salarian A.
        • Holmstrom L.
        • McNames J.
        • Horak F.B.
        Mobility lab to assess balance and gait with synchronized body-worn sensors.
        J Bioeng Biomed Sci. 2011; : 007
        • Mancini M.
        • Salarian A.
        • Carlson-Kuhta P.
        • et al.
        ISway: a sensitive, valid and reliable measure of postural control.
        J Neuroeng Rehabil. 2012; 9: 59
        • Mancini M.
        • Horak F.B.
        • Zampieri C.
        • Carlson-Kuhta P.
        • Nutt J.G.
        • Chiari L.
        Trunk accelerometry reveals postural instability in untreated Parkinson's disease.
        Parkinsonism Relat Disord. 2011; 17: 557-562
        • Salarian A.
        • Horak F.B.
        • Zampieri C.
        • Carlson-Kuhta P.
        • Nutt J.G.
        • Aminian K.
        iTUG, a sensitive and reliable measure of mobility.
        IEEE Trans Neural Syst Rehabil Eng. 2010; 18: 303-310
        • Weiss A.
        • Herman T.
        • Plotnik M.
        • Brozgol M.
        • Giladi N.
        • Hausdorff J.M.
        An instrumented timed up and go: the added value of an accelerometer for identifying fall risk in idiopathic fallers.
        Physiol Meas. 2011; 32: 2003-2018
        • Najafi B.
        • Horn D.
        • Marclay S.
        • Crews R.T.
        • Wu S.
        • Wrobel J.S.
        Assessing postural control and postural control strategy in diabetes patients using innovative and wearable technology.
        J Diabetes Sci Technol. 2010; 4: 780-791
        • Spain R.
        • George R.S.
        • Salarian A.
        • et al.
        Body-worn motion sensors detect balance and gait deficits in people with multiple sclerosis who have normal walking speed.
        Gait Posture. 2012; 35: 573-578
        • Zampieri C.
        • Salarian A.
        • Carlson-Kuhta P.
        • Aminian K.
        • Nutt J.G.
        • Horak F.B.
        The instrumented timed up and go test: potential outcome measure for disease modifying therapies in Parkinson's disease.
        J Neurol Neurosurg Psychiatry. 2010; 81: 171-176
        • Navarrete-Opazo A.
        • Mitchell G.S.
        Therapeutic potential of intermittent hypoxia: a matter of dose.
        Am J Physiol Regul Integr Comp Physiol. 2014; 307: R1181-R1197
        • Navarrete-Opazo A.
        • Alcayaga J.
        • Testa D.
        • Quinteros A.L.
        Intermittent hypoxia does not elicit memory impairment in spinal cord injury patients.
        Arch Clin Neuropsychol. 2016; 31: 332-342
        • Navarrete-Opazo A.
        • Dougherty B.J.
        • Mitchell G.S.
        Enhanced recovery of breathing capacity from combined adenosine 2A receptor inhibition and daily acute intermittent hypoxia after chronic cervical spinal injury.
        Exp Neurol. 2017; 287: 93-101
        • Whitney S.L.
        • Roche J.L.
        • Marchetti G.F.
        • et al.
        A comparison of accelerometry and center of pressure measures during computerized dynamic posturography: a measure of balance.
        Gait Posture. 2011; 33: 594-599
        • Moe-Nilssen R.
        • Helbostad J.L.
        Trunk accelerometry as a measure of balance control during quiet standing.
        Gait Posture. 2002; 16: 60-68
        • Salarian A.
        • Russmann H.
        • Vingerhoets F.J.
        • Burkhard P.R.
        • Aminian K.
        Ambulatory monitoring of physical activities in patients with Parkinson's disease.
        IEEE Trans Biomed Eng. 2007; 54: 2296-2299
        • Amiridis I.G.
        • Hatzitaki V.
        • Arabatzi F.
        Age-induced modifications of static postural control in humans.
        Neurosci Lett. 2003; 350: 137-140
        • Maki B.E.
        • Holliday P.J.
        • Fernie G.R.
        Aging and postural control. A comparison of spontaneous- and induced-sway balance tests.
        J Am Geriatr Soc. 1990; 38: 1-9
        • Prieto T.E.
        • Myklebust J.B.
        • Hoffmann R.G.
        • Lovett E.G.
        • Myklebust B.M.
        Measures of postural steadiness: differences between healthy young and elderly adults.
        IEEE Trans Biomed Eng. 1996; 43: 956-966
        • De Leon R.D.
        • Hodgson J.A.
        • Roy R.R.
        • Edgerton V.R.
        Full weight-bearing hindlimb standing following stand training in the adult spinal cat.
        J Neurophysiol. 1998; 80: 83-91
        • Lemay J.F.
        • Duclos C.
        • Nadeau S.
        • Gagnon D.
        • Desrosiers E.
        Postural and dynamic balance while walking in adults with incomplete spinal cord injury.
        J Electromyogr Kinesiol. 2014; 24: 739-746
        • Buehner J.J.
        • Forrest G.F.
        • Schmidt-Read M.
        • White S.
        • Tansey K.
        • Basso D.M.
        Relationship between ASIA examination and functional outcomes in the NeuroRecovery Network Locomotor Training Program.
        Arch Phys Med Rehabil. 2012; 93: 1530-1540
        • Allum J.H.
        • Tang K.S.
        • Carpenter M.G.
        • Oude Nijhuis L.B.
        • Bloem B.R.
        Review of first trial responses in balance control: influence of vestibular loss and Parkinson's disease.
        Human Move Sci. 2011; 30: 279-295
        • Baldinotti I.
        • Timmann D.
        • Kolb F.P.
        • Kutz D.F.
        Jerk analysis of active body-weight-transfer.
        Gait Posture. 2010; 32: 667-672
        • Nicolai S.
        • Mirelman A.
        • Herman T.
        • et al.
        Improvement of balance after audio-biofeedback. A 6-week intervention study in patients with progressive supranuclear palsy.
        Z Gerontol Geriatr. 2010; 43: 224-228
        • Dietz V.
        • Wirz M.
        • Jensen L.
        Locomotion in patients with spinal cord injuries.
        Phys Ther. 1997; 77: 508-516
        • Arnadottir S.A.
        • Mercer V.S.
        Effects of footwear on measurements of balance and gait in women between the ages of 65 and 93 years.
        Phys Ther. 2000; 80: 17-27
        • Gershon R.C.
        • Wagster M.V.
        • Hendrie H.C.
        • Fox N.A.
        • Cook K.F.
        • Nowinski C.J.
        NIH toolbox for assessment of neurological and behavioral function.
        Neurology. 2013; 80: S2-S6