Advertisement

Respiratory Training Improves Blood Pressure Regulation in Individuals With Chronic Spinal Cord Injury

  • Sevda C. Aslan
    Affiliations
    Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
    Search for articles by this author
  • David C. Randall
    Affiliations
    Department of Physiology, University of Kentucky, Lexington, Kentucky
    Search for articles by this author
  • Andrei V. Krassioukov
    Affiliations
    Experimental Medicine Program, University of British Columbia, Vancouver, British Columbia, Canada

    International Collaboration on Repair Discoveries (ICORD), Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada

    GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, British Columbia, Canada
    Search for articles by this author
  • Aaron Phillips
    Affiliations
    Experimental Medicine Program, University of British Columbia, Vancouver, British Columbia, Canada

    International Collaboration on Repair Discoveries (ICORD), Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada

    GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, British Columbia, Canada
    Search for articles by this author
  • Alexander V. Ovechkin
    Correspondence
    Corresponding author Alexander V. Ovechkin, MD, PhD, Department of Neurological Surgery, University of Louisville, 220 Abraham Flexner Way, Suite 1520, Louisville, KY 40202.
    Affiliations
    Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
    Search for articles by this author
Published:December 21, 2015DOI:https://doi.org/10.1016/j.apmr.2015.11.018

      Abstract

      Objective

      To investigate the effects of respiratory motor training (RMT) on pulmonary function and orthostatic stress–mediated cardiovascular and autonomic responses in individuals with chronic spinal cord injury (SCI).

      Design

      Before-after intervention case-controlled clinical study.

      Setting

      SCI research center and outpatient rehabilitation unit.

      Participants

      A sample of (N=21) individuals with chronic SCI ranging from C3 to T2 diagnosed with orthostatic hypotension (OH) (n=11) and healthy, noninjured controls (n=10).

      Interventions

      A total of 21±2 sessions of pressure threshold inspiratory-expiratory RMT performed 5d/wk during a 1-month period.

      Main Outcome Measures

      Standard pulmonary function test: forced vital capacity, forced expiratory volume in one second, maximal inspiratory pressure, maximal expiratory pressure, beat-to-beat arterial blood pressure, heart rate, and respiratory rate were acquired during the orthostatic sit-up stress test before and after the RMT program.

      Results

      Completion of RMT intervention abolished OH in 7 of 11 individuals. Forced vital capacity, low-frequency component of power spectral density of blood pressure and heart rate oscillations, baroreflex effectiveness, and cross-correlations between blood pressure, heart rate, and respiratory rate during the orthostatic challenge were significantly improved, approaching levels observed in noninjured individuals. These findings indicate increased sympathetic activation and baroreflex effectiveness in association with improved respiratory-cardiovascular interactions in response to the sudden decrease in blood pressure.

      Conclusions

      Respiratory training increases respiratory capacity and improves orthostatic stress–mediated respiratory, cardiovascular, and autonomic responses, suggesting that this intervention can be an efficacious therapy for managing OH after SCI.

      Keywords

      List of abbreviations:

      DBP (diastolic blood pressure), HF (high-frequency), LF (low-frequency), OH (orthostatic hypotension), PSD (power spectral density), RMT (respiratory motor training), SBP (systolic blood pressure), SCI (spinal cord injury)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Archives of Physical Medicine and Rehabilitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Illman A.
        • Stiller K.
        • Williams M.
        The prevalence of orthostatic hypotension during physiotherapy treatment in patients with an acute spinal cord injury.
        Spinal Cord. 2000; 38: 741-747
        • Kaufmann H.
        Consensus statement on the definition of orthostatic hypotension, pure autonomic failure and multiple system atrophy.
        Clin Auton Res. 1996; 6: 125-126
        • Wessely S.
        • Nickson J.
        • Cox B.
        Symptoms of low blood pressure: a population study.
        BMJ. 1990; 301: 362-365
        • Linn W.S.
        • Adkins R.H.
        • Gong Jr., H.
        • Waters R.L.
        Pulmonary function in chronic spinal cord injury: a cross-sectional survey of 222 southern California adult outpatients.
        Arch Phys Med Rehabil. 2000; 81: 757-763
        • Krassioukov A.
        • Eng J.J.
        • Warburton D.E.
        • Teasell R.
        A systematic review of the management of orthostatic hypotension after spinal cord injury.
        Arch Phys Med Rehabil. 2009; 90: 876-885
        • Walter J.S.
        • Sacks J.
        • Othman R.
        • et al.
        A database of self-reported secondary medical problems among VA spinal cord injury patients: its role in clinical care and management.
        J Rehabil Res Dev. 2002; 39: 53-61
        • Eigenbrodt M.L.
        • Rose K.M.
        • Couper D.J.
        • Arnett D.K.
        • Smith R.
        • Jones D.
        Orthostatic hypotension as a risk factor for stroke: the Atherosclerosis Risk in Communities (ARIC) study, 1987-1996.
        Stroke. 2000; 31: 2307-2313
        • Bauman W.A.
        • Korsten M.A.
        • Radulovic M.
        • Schilero G.J.
        • Wecht J.M.
        • Spungen A.M.
        31st g. Heiner sell lectureship: secondary medical consequences of spinal cord injury.
        Top Spinal Cord Inj Rehabil. 2012; 18: 354-378
        • Low P.A.
        • Opfer-Gehrking T.L.
        • McPhee B.R.
        • et al.
        Prospective evaluation of clinical characteristics of orthostatic hypotension.
        Mayo Clin Proc. 1995; 70: 617-622
        • Boutellier U.
        • Farhi L.E.
        Influence of breathing frequency and tidal volume on cardiac output.
        Respir Physiol. 1986; 66: 123-133
        • Frisbie J.H.
        Breathing and the support of blood pressure after spinal cord injury.
        Spinal Cord. 2005; 43: 406-407
        • Rickards C.A.
        • Cohen K.D.
        • Bergeron L.L.
        • et al.
        Inspiratory resistance, cerebral blood flow velocity, and symptoms of acute hypotension.
        Aviat Space Environ Med. 2008; 79: 557-564
        • Hart N.
        • Laffont I.
        • de la Sota A.P.
        • et al.
        Respiratory effects of combined truncal and abdominal support in patients with spinal cord injury.
        Arch Phys Med Rehabil. 2005; 86: 1447-1451
        • Eckberg D.L.
        • Orshan C.R.
        Respiratory and baroreceptor reflex interactions in man.
        J Clin Invest. 1977; 59: 780-785
        • Elstad M.
        • Walloe L.
        • Holme N.L.
        • Maes E.
        • Thoresen M.
        Respiratory sinus arrhythmia stabilizes mean arterial blood pressure at high-frequency interval in healthy humans.
        Eur J Appl Physiol. 2015; 115: 521-530
        • Hirsch J.A.
        • Bishop B.
        Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate.
        Am J Physiol. 1981; 241: H620-H629
        • Dick T.E.
        • Shannon R.
        • Lindsey B.G.
        • et al.
        Arterial pulse modulated activity is expressed in respiratory neural output.
        J Appl Physiol (1985). 2005; 99: 691-698
        • Frisbie J.H.
        Mutual control of breathing and blood pressure: case report.
        Spinal Cord. 2007; 45: 797-798
        • Brown R.
        • DiMarco A.F.
        • Hoit J.D.
        • Garshick E.
        Respiratory dysfunction and management in spinal cord injury.
        Respir Care. 2006; 51: 853-868
        • Phillips A.A.
        • Krassioukov A.V.
        • Ainslie P.N.
        • Warburton D.E.
        Baroreflex function after spinal cord injury.
        J Neurotrauma. 2012; 29: 2431-2445
        • Teasell R.W.
        • Arnold J.M.
        • Krassioukov A.
        • Delaney G.A.
        Cardiovascular consequences of loss of supraspinal control of the sympathetic nervous system after spinal cord injury.
        Arch Phys Med Rehabil. 2000; 81: 506-516
        • Krassioukov A.
        Autonomic function following cervical spinal cord injury.
        Respir Physiol Neurobiol. 2009; 169: 157-164
        • Phillips A.A.
        • Cote A.T.
        • Warburton D.E.
        A systematic review of exercise as a therapeutic intervention to improve arterial function in persons living with spinal cord injury.
        Spinal Cord. 2011; 49: 702-714
        • Raj S.R.
        • Coffin S.T.
        Medical therapy and physical maneuvers in the treatment of the vasovagal syncope and orthostatic hypotension.
        Progr Cardiovasc Dis. 2013; 55: 425-433
        • Tamplin J.
        • Berlowitz D.J.
        A systematic review and meta-analysis of the effects of respiratory muscle training on pulmonary function in tetraplegia.
        Spinal Cord. 2014; 52: 175-180
        • Van Houtte S.
        • Vanlandewijck Y.
        • Gosselink R.
        Respiratory muscle training in persons with spinal cord injury: a systematic review.
        Respir Med. 2006; 100: 1886-1895
        • Gosselink R.
        • Decramer M.
        Inspiratory muscle training: where are we?.
        Eur Respir J. 1994; 7: 2103-2105
        • Kirshblum S.C.
        • Waring W.
        • Biering-Sorensen F.
        • et al.
        Reference for the 2011 revision of the International Standards for Neurological Classification of Spinal Cord Injury.
        J Spinal Cord Med. 2011; 34: 547-554
        • American Thoracic Society/European Respiratory Society
        ATS/ERS Statement on respiratory muscle testing.
        Am J Respir Crit Care Med. 2002; 166: 518-624
        • Hankinson J.L.
        • Odencrantz J.R.
        • Fedan K.B.
        Spirometric reference values from a sample of the general U.S. population.
        Am J Respir Crit Care Med. 1999; 159: 179-187
        • Ovechkin A.
        • Vitaz T.
        • Terson de Paleville D.
        • Aslan S.
        • McKay W.
        Evaluation of respiratory muscle activation in individuals with chronic spinal cord injury.
        Respir Physiol Neurobiol. 2010; 173: 171-178
        • Aslan S.C.
        • Randall D.C.
        • Donohue K.D.
        • et al.
        Blood pressure regulation in neurally intact human vs. acutely injured paraplegic and tetraplegic patients during passive tilt.
        Am J Physiol Regul Integr Comp Physiol. 2007; 292: R1146-R1157
        • Claydon V.E.
        • Krassioukov A.V.
        Orthostatic hypotension and autonomic pathways after spinal cord injury.
        J Neurotrauma. 2006; 23: 1713-1725
        • Berntson G.G.
        • Bigger Jr., J.T.
        • Eckberg D.L.
        • et al.
        Heart rate variability: origins, methods, and interpretive caveats.
        Psychophysiology. 1997; 34: 623-648
        • Di Rienzo M.
        • Parati G.
        • Radaelli A.
        • Castiglioni P.
        Baroreflex contribution to blood pressure and heart rate oscillations: time scales, time-variant characteristics and nonlinearities.
        Philos Trans A Math Phys Eng Sci. 2009; 367: 1301-1318
        • Inoue K.
        • Miyake S.
        • Kumashiro M.
        • Ogata H.
        • Yoshimura O.
        Power spectral analysis of heart rate variability in traumatic quadriplegic humans.
        Am J Physiol. 1990; 258: H1722-H1726
        • Larson J.L.
        • Covey M.K.
        • Wirtz S.E.
        • et al.
        Cycle ergometer and inspiratory muscle training in chronic obstructive pulmonary disease.
        Am J Respir Crit Care Med. 1999; 160: 500-507
        • Griffiths L.A.
        • McConnell A.K.
        The influence of inspiratory and expiratory muscle training upon rowing performance.
        Eur J Appl Physiol. 2007; 99: 457-466
        • Mueller G.
        • Perret C.
        • Spengler C.M.
        Optimal intensity for respiratory muscle endurance training in patients with spinal cord injury.
        J Rehabil Med. 2006; 38: 381-386
        • Faul F.
        • Erdfelder E.
        • Lang A.G.
        • Buchner A.
        G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences.
        Behav Res Methods. 2007; 39: 175-191
        • Galeiras Vazquez R.
        • Rascado Sedes P.
        • Mourelo Farina M.
        • Montoto Marques A.
        • Ferreiro Velasco M.E.
        Respiratory management in the patient with spinal cord injury.
        BioMed Res Int. 2013; 2013: 168757
        • Mueller G.
        • Hopman M.T.
        • Perret C.
        Comparison of respiratory muscle training methods in individuals with motor and sensory complete tetraplegia: a randomized controlled trial.
        J Rehabil Med. 2013; 45: 248-253
        • Litchke L.G.
        • Russian C.J.
        • Lloyd L.K.
        • Schmidt E.A.
        • Price L.
        • Walker J.L.
        Effects of respiratory resistance training with a concurrent flow device on wheelchair athletes.
        J Spinal Cord Med. 2008; 31: 65-71
        • Berlowitz D.J.
        • Tamplin J.
        Respiratory muscle training for cervical spinal cord injury.
        Cochrane Database Syst Rev. 2013; : CD008507
        • Postma K.
        • Haisma J.A.
        • Hopman M.T.
        • Bergen M.P.
        • Stam H.J.
        • Bussmann J.B.
        Resistive inspiratory muscle training in people with spinal cord injury during inpatient rehabilitation: a randomized controlled trial.
        Phys Ther. 2014; 94: 1709-1719
        • West C.R.
        • Taylor B.J.
        • Campbell I.G.
        • Romer L.M.
        Effects of inspiratory muscle training on exercise responses in Paralympic athletes with cervical spinal cord injury.
        Scand J Med Sci Sports. 2014; 24: 764-772
        • Mueller G.
        • Hopman M.T.
        • Perret C.
        Comparison of respiratory muscle training methods in individuals with motor complete tetraplegia.
        Top Spinal Cord Inj Rehabil. 2012; 18: 118-121
        • Sapienza C.M.
        • Wheeler K.
        Respiratory muscle strength training: functional outcomes versus plasticity.
        Semin Speech Lang. 2006; 27: 236-244
        • Sapienza C.
        • Troche M.
        • Pitts T.
        • Davenport P.
        Respiratory strength training: concept and intervention outcomes.
        Semin Speech Lang. 2011; 32: 21-30
        • Reyes A.
        • Ziman M.
        • Nosaka K.
        Respiratory muscle training for respiratory deficits in neurodegenerative disorders: a systematic review.
        Chest. 2013; 143: 1386-1394
        • Phillips A.A.
        • Krassioukov A.V.
        • Ainslie P.N.
        • Cote A.T.
        • Warburton D.E.
        Increased central arterial stiffness explains baroreflex dysfunction in spinal cord injury.
        J Neurotrauma. 2014; 31: 1122-1128
        • Currie K.D.
        • Wong S.C.
        • Warburton D.E.
        • Krassioukov A.V.
        Reliability of the sit-up test in individuals with spinal cord injury.
        J Spinal Cord Med. 2015; 38: 563-566
        • Gibbons C.H.
        • Freeman R.
        Delayed orthostatic hypotension: a frequent cause of orthostatic intolerance.
        Neurology. 2006; 67: 28-32
        • Fedorowski A.
        • Melander O.
        Syndromes of orthostatic intolerance: a hidden danger.
        J Intern Med. 2013; 273: 322-335
        • Gurevich T.
        • Machmid H.
        • Klepikov D.
        • Ezra A.
        • Giladi N.
        • Peretz C.
        Head-up tilt testing for detecting orthostatic hypotension: how long do we need to wait?.
        Neuroepidemiology. 2014; 43: 239-243
        • Ogoh S.
        • Yoshiga C.C.
        • Secher N.H.
        • Raven P.B.
        Carotid-cardiac baroreflex function does not influence blood pressure regulation during head-up tilt in humans.
        J Physiol Sci. 2006; 56: 227-233
        • Lewis N.C.
        • Atkinson G.
        • Lucas S.J.
        • et al.
        Diurnal variation in time to presyncope and associated circulatory changes during a controlled orthostatic challenge.
        Am J Physiol Regul Integr Comp Physiol. 2010; 299: R55-R61
        • Phillips A.A.
        • Krassioukov A.V.
        • Ainslie P.N.
        • Warburton D.E.
        Perturbed and spontaneous regional cerebral blood flow responses to changes in blood pressure after high-level spinal cord injury: the effect of midodrine.
        J Appl Physiol (1985). 2014; 116: 645-653
        • Chapleau M.W.
        • Sabharwal R.
        Methods of assessing vagus nerve activity and reflexes.
        Heart Failure Rev. 2011; 16: 109-127
        • Baldridge B.R.
        • Burgess D.E.
        • Zimmerman E.E.
        • et al.
        Heart rate-arterial blood pressure relationship in conscious rat before vs. after spinal cord transection.
        Am J Physiol Regul Integr Comp Physiol. 2002; 283: R748-R756
        • Ryan K.L.
        • Cooke W.H.
        • Rickards C.A.
        • Lurie K.G.
        • Convertino V.A.
        Breathing through an inspiratory threshold device improves stroke volume during central hypovolemia in humans.
        J Appl Physiol. 2008; 104: 1402-1409
        • Convertino V.A.
        • Ratliff D.A.
        • Doerr D.F.
        • et al.
        Effects of repeated Valsalva maneuver straining on cardiac and vasoconstrictive baroreflex responses.
        Aviat Space Environ Med. 2003; 74: 212-219
        • Convertino V.A.
        • Cooke W.H.
        • Lurie K.G.
        Inspiratory resistance as a potential treatment for orthostatic intolerance and hemorrhagic shock.
        Aviat Space Environ Med. 2005; 76: 319-325
        • Poh P.Y.
        • Carter III, R.
        • Hinojosa-Laborde C.
        • Mulligan J.
        • Grudic G.Z.
        • Convertino V.A.
        Respiratory pump contributes to increased physiological reserve for compensation during simulated haemorrhage.
        Exp Physiol. 2014; 99: 1421-1426
        • Thijs R.D.
        • Wieling W.
        • van den Aardweg J.G.
        • van Dijk J.G.
        Respiratory countermaneuvers in autonomic failure.
        Neurology. 2007; 69: 582-585
        • Frisbie J.H.
        Correction of orthostatic hypotension by respiratory effort.
        Spinal Cord. 2010; 48: 434-435
        • Reyes del Paso G.A.
        • Cea J.I.
        • Gonzalez-Pinto A.
        • et al.
        Short-term effects of a brief respiratory training on baroreceptor cardiac reflex function in normotensive and mild hypertensive subjects.
        Appl Psychophysiol Biofeedback. 2006; 31: 37-49
        • Harms C.A.
        • Wetter T.J.
        • McClaran S.R.
        • et al.
        Effects of respiratory muscle work on cardiac output and its distribution during maximal exercise.
        J Appl Physiol (1985). 1998; 85: 609-618
        • Jaenisch R.B.
        • Hentschke V.S.
        • Quagliotto E.
        • et al.
        Respiratory muscle training improves hemodynamics, autonomic function, baroreceptor sensitivity, and respiratory mechanics in rats with heart failure.
        J Appl Physiol (1985). 2011; 111: 1664-1670
        • Curt A.
        • Weinhardt C.
        • Dietz V.
        Significance of sympathetic skin response in the assessment of autonomic failure in patients with spinal cord injury.
        J Auton Nerv Syst. 1996; 61: 175-180