Advertisement

Brain-Computer Interface: Current and Emerging Rehabilitation Applications

  • Janis J. Daly
    Correspondence
    Corresponding author Janis J. Daly, PhD, MS, Director, Brain Rehabilitation Research Center of Excellence, North Florida/South Georgia Veterans Affairs Medical Center, 151-A, 1601 SW Archer Rd, Gainesville, FL 32608.
    Affiliations
    Brain Rehabilitation Research Program, McKnight Brain Institute, University of Florida, Gainesville, FL

    Department of Neurology, College of Medicine, University of Florida, Gainesville, FL

    Brain Rehabilitation Research Center of Excellence, Gainesville, FL

    North Florida/South Georgia Veterans Affairs Medical Center, Gainesville, FL
    Search for articles by this author
  • Jane E. Huggins
    Affiliations
    Department of Physical Medicine and Rehabilitation, Department of Biomedical Engineering, and Program of Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
    Search for articles by this author

      Abstract

      A formal definition of brain-computer interface (BCI) is as follows: a system that acquires brain signal activity and translates it into an output that can replace, restore, enhance, supplement, or improve the existing brain signal, which can, in turn, modify or change ongoing interactions between the brain and its internal or external environment. More simply, a BCI can be defined as a system that translates “brain signals into new kinds of outputs.” After brain signal acquisition, the BCI evaluates the brain signal and extracts signal features that have proven useful for task performance. There are 2 broad categories of BCIs: implantable and noninvasive, distinguished by invasively and noninvasively acquired brain signals, respectively. For this supplement, we will focus on BCIs that use noninvasively acquired brain signals.

      Keywords

      List of abbreviations:

      AAC (augmentative and alternative communication), ALS (amyotrophic lateral sclerosis), BCI (brain-computer interface), CNS (central nervous system), EEG (electroencephalography), fMRI (functional magnetic resonance imaging), fNIRS (functional near infrared spectroscopy), tDCS (transcranial direct current stimulation), TMS (transcranial magnetic stimulation)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Archives of Physical Medicine and Rehabilitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wolpaw J.
        • Wolpaw E.
        Something new under the sun.
        in: Wolpaw J. Wolpaw E. Brain computer interfaces: principles and practice. Oxford Univ Pr, New York2012
        • Daly J.J.
        • Wolpaw J.R.
        Brain-computer interfaces in neurological rehabilitation.
        Lancet Neurol. 2008; 7: 1032-1043
        • Huggins J.
        • Guger C.
        • Allison B.
        • et al.
        Workshops of the fifth international brain-computer interface meeting: defining the future.
        Brain Comput Interfaces (Abingdon). 2014; 1: 27-49
        • Peters B.
        • Bieker G.
        • Heckman S.M.
        • et al.
        Brain-computer interface users speak up: the Virtual Users' Forum at the 2013 International Brain-Computer Interface meeting.
        Arch Phys Med Rehabil. 2015; 96: S33-S37
        • Huggins J.E.
        • Wolpaw J.R.
        Papers from the fifth international brain-computer interface meeting. Preface.
        J Neural Eng. 2014; 11: 030301
        • Shane H.C.
        • Blackstone S.
        • Vanderheiden G.
        • Williams M.
        • DeRuyter F.
        Using AAC technology to access the world.
        Assist Technol. 2012; 24: 3-13
        • Lemoignan J.
        • Ells C.
        Amyotrophic lateral sclerosis and assisted ventilation: how patients decide.
        Palliat Support Care. 2010; 8: 207-213
        • Mathy P.
        Use of electronic communication by adult AAC users.
        in: 7th Biennial Conference of the International Society of Augmentative and Alternative Communication. British Columbia (Canada), Vancouver1996
        • Farwell L.A.
        • Donchin E.
        Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials.
        Electroencephalogr Clin Neurophysiol. 1988; 70: 510-523
        • Wolpaw J.R.
        • McFarland D.J.
        • Cacace A.T.
        Preliminary studies for a direct brain-to-computer parallel interface. In: IBM Technical Symposium.
        Behav Res Meth. 1986; 1986: 11-20
        • Blain-Moraes S.
        • Schaff R.
        • Gruis K.L.
        • Huggins J.E.
        • Wren P.A.
        Barriers to and mediators of brain-computer interface user acceptance: focus group findings.
        Ergonomics. 2012; 55: 516-525
        • Kübler A.
        • Holz E.M.
        • Sellers E.W.
        • Vaughan T.M.
        Toward independent home use of brain-computer interfaces: a decision algorithm for selection of potential end-users.
        Arch Phys Med Rehabil. 2015; 96: S27-S32
        • Hill K.
        • Kovacs T.
        • Shin S.
        Critical issues using brain-computer interfaces for augmentative and alternative communication.
        Arch Phys Med Rehabil. 2015; 96: S8-S15
        • Zickler C.
        • Riccio A.
        • Leotta F.
        • et al.
        A brain-computer interface as input channel for a standard assistive technology software.
        Clin EEG Neurosci. 2011; 42: 236-244
        • Thompson D.E.
        • Gruis K.L.
        • Huggins J.E.
        A plug-and-play brain-computer interface to operate commercial assistive technology.
        Disabil Rehabil Assist Technol. 2014; 9: 144-150
        • Pfurtscheller G.
        • Allison B.Z.
        • Brunner C.
        • et al.
        The hybrid BCI.
        Front Neurosci. 2010; 4: 30
        • Schettini F.
        • Riccio A.
        • Simione L.
        • et al.
        Assistive device with conventional, alternative, and brain-computer interface inputs to enhance interaction with the environment for people with amyotrophic lateral sclerosis: a feasibility and usability study.
        Arch Phys Med Rehabil. 2015; 96: S46-S53
        • Townsend G.
        • LaPallo B.K.
        • Boulay C.B.
        • et al.
        A novel P300-based brain-computer interface stimulus presentation paradigm: moving beyond rows and columns.
        Clin Neurophysiol. 2010; 121: 1109-1120
        • Nijboer F.
        • Sellers E.W.
        • Mellinger J.
        • et al.
        A P300-based brain–computer interface for people with amyotrophic lateral sclerosis.
        Clin Neurophysiol. 2008; 119: 1909-1916
        • Sellers E.W.
        • Donchin E.
        A P300-based brain–computer interface: initial tests by ALS patients.
        Clin Neurophysiol. 2006; 3: 538-548
      1. Ruff RL, Wolpaw JR, Bedlack R. A clinical demonstration of an EEG brain-computer interface for ALS patients. Cooperative Study Program (CSP) #567. Department of Veterans Affairs; 2011.

        • Sellers E.W.
        • Vaughan T.M.
        • Wolpaw J.R.
        A brain-computer interface for long-term independent home use.
        Amyotroph Lateral Scler. 2010; 11: 449-455
        • Guger C.
        • Sorger B.
        • Noirhomme Q.
        • et al.
        Brain-computer interfaces for assessment and communication in disorders of consciousness.
        in: Naik G.R. Emerging theory and practice in neuroprosthetics. IGI Global, Hershey2014
      2. Coyle D, Carroll A, Stow J, McCann A, Ally A, McElligott J. Enabling control in the minimally conscious state in a single session with a three channel BCI. In: Proceedings of the 1st International Decoder Workshop; 2012 April 11-13; Paris (France). p 1-4. Available at: http://castor.tugraz.at/doku/BCIMeeting2013/018.pdf. Accessed February 10, 2015.

      3. Coyle D, Carroll Á, Stow J, McCreadie K, McElligott J. Visual and stereo audio sensorimotor rhythm feedback in the minimally conscious state. In: Proceedings of the 5th International Brain-Computer Interface Meeting; 2013 June 3-7; Pacific Grove, CA. Graz (Austria): Graz Univ of Technology. p 38-9. Available at: http://castor.tugraz.at/doku/BCIMeeting2013/BCIMeeting2013_all.pdf. Accessed February 10, 2015.

        • Risetti M.
        • Formisano R.
        • Toppi J.
        • et al.
        On ERPs detection in disorders of consciousness rehabilitation.
        Front Hum Neurosci. 2013; 7: 775
      4. Lesenfants D, Partoune N, Soddu A, et al. Design of a novel covert SSVEP-based BCI. In: Proceedings of the 5th International Brain-Computer Interface Conference. 2011; Graz (Austria).

        • Pokorny C.
        • Klobassa D.
        • Pichler G.
        • et al.
        The auditory P300-based single-switch brain-computer interface: paradigm transition from healthy subjects to minimally conscious patients.
        Artif Intell Med. 2013; 59: 81-90
        • Müller-Putz G.
        • Pokorny C.
        • Klobassa D.
        • Horki P.
        A single switch BCI based on passive and imagined movements: towards restoring communication in minimally conscious patients.
        Int J Neural Syst. 2013; 23: 1250037
        • Naci L.
        • Monti M.M.
        • Cruse D.
        • et al.
        Brain-computer interfaces for communication with nonresponsive patients.
        Ann Neurol. 2012; 72: 312-323
        • Kubler A.
        • Kotchoubey B.
        Brain-computer interfaces in the continuum of consciousness.
        Curr Opin Neurol. 2007; 20: 643-649
        • Kübler A.
        • Furdea A.
        • Halder S.
        • Hammer E.M.
        • Nijboer F.
        • Kotchoubey B.
        A brain-computer interface controlled auditory event-related potential (P300) spelling system for locked-in patients.
        Ann N Y Acad Sci. 2009; 1157: 90-100
        • Coyle D.
        • Stow J.
        • McCreadie K.
        • et al.
        Sensorimotor modulation assessment and brain-computer interface training in disorders of consciousness.
        Arch Phys Med Rehabil. 2015; 96: S62-S70
        • McFarland D.J.
        • Wolpaw J.R.
        Sensorimotor rhythm-based brain-computer interface (BCI): feature selection by regression improves performance.
        IEEE Trans Neural Syst Rehabil Eng. 2005; 13: 372-379
        • Enzinger C.
        • Ropele S.
        • Fazekas F.
        • et al.
        Brain motor system function in a patient with complete spinal cord injury following extensive brain-computer interface training.
        Exp Brain Res. 2008; 190: 215-223
        • Riccio A.
        • Holz E.
        • Aricò P.
        • et al.
        Hybrid p300-based brain-computer interface to improve usability for people with severe motor disability: electromyographic signals for error correction during a spelling task.
        Arch Phys Med Rehabil. 2015; 96: S54-S61
        • Brunner P.
        • Joshi S.
        • Briskin S.
        • Wolpaw J.R.
        • Bischof H.
        • Schalk G.
        Does the P300 speller depend on eye-gaze?.
        J Neural Eng. 2010; 7: 056013
        • Hayashi H.
        • Oppenheimer E.A.
        ALS patients on TPPV: totally locked-in state, neurologic findings and ethical implications.
        Neurology. 2003; 61: 135-137
        • Treder M.
        • Blankertz B.
        (C)overt attention and visual speller design in an ERP-based brain-computer interface.
        Behav Brain Funct. 2010; 6: 28
        • Aloise F.
        • Arico P.
        • Schettini F.
        • Salinari S.
        • Mattia D.
        • Cincotti F.
        Asynchronous gaze-independent event-related potential-based brain-computer interface.
        Artif Intell Med. 2013; 59: 61-69
        • Marchetti M.
        • Piccione F.
        • Silvoni S.
        • Gamberini L.
        • Priftis K.
        Covert visuospatial attention orienting in a brain-computer interface for amyotrophic lateral sclerosis patients.
        Neurorehabil Neural Repair. 2013; 27: 430-438
        • Walter S.
        • Quigley C.
        • Andersen S.K.
        • Mueller M.M.
        Effects of overt and covert attention on the steady-state visual evoked potential.
        Neurosci Lett. 2012; 519: 37-41
        • Riccio A.
        • Mattia D.
        • Simione L.
        • Olivetti M.
        • Cincotti F.
        Eye-gaze independent EEG-based brain-computer interfaces for communication.
        J Neural Eng. 2012; 9: 045001
        • Arico P.
        • Aloise F.
        • Schettini F.
        • Salinari S.
        • Mattia D.
        • Cincotti F.
        Influence of P300 latency jitter on event related potential-based brain-computer interface performance.
        J Neural Eng. 2014; 11: 035008
        • Lim J.H.
        • Hwang H.J.
        • Han C.H.
        • Jung K.Y.
        • Im C.H.
        Classification of binary intentions for individuals with impaired oculomotor function: ‘Eyes-closed' SSVEP-based brain-computer interface (BCI).
        J Neural Eng. 2013; 10: 026021
        • Hill N.J.
        • Scholkopf B.
        An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli.
        J Neural Eng. 2012; 9: 026011
        • Hohne J.
        • Schreuder M.
        • Blankertz B.
        • Tangermann M.
        A novel 9-class auditory ERP paradigm driving a predictive text entry system.
        Front Neurosci. 2011; 5: 99
        • Nijboer F.
        • Furdea A.
        • Gunst I.
        • et al.
        An auditory brain-computer interface (BCI).
        J Neurosci Methods. 2008; 167: 43-50
        • Schreuder M.
        • Rost T.
        • Tangermann M.
        Listen, you are writing! Speeding up online spelling with a dynamic auditory BCI.
        Front Neurosci. 2011; 5: 112
        • Brouwer A.-M.
        • Van Erp Jan B.F.
        A tactile P300 brain-computer interface.
        Front Neurosc. 2010; 5: 12
      5. Ortner R, Rodriguez J, Guger C. A tactile P300 brain-computer interface. Austria: g.tec Medical Engineering; 2012. Technical Report 3.

        • Kaufmann T.
        • Holz E.M.
        • Kubler A.
        Comparison of tactile, auditory, and visual modality for brain-computer interface use: a case study with a patient in the locked-in state.
        Front Neurosci. 2013; 7: 129
      6. Mori H, Matsumoto Y, Struzik ZR, et al. Multi-command tactile and auditory brain computer interface based on head position stimulation. In: Proceedings of the 5th International Brain-Computer Interface Meeting; 2013 June 3-7; Pacific Grove, CA. Graz (Austria): Graz Univ of Technology. Available at: http://castor.tugraz.at/doku/BCIMeeting2013/095.pdf. Accessed February 10, 2015.

        • Piccione F.
        • Giorgi F.
        • Tonin P.
        • et al.
        P300-based brain computer interface: reliability and performance in healthy and paralysed participants.
        Clin Neurophysiol. 2006; 117: 531-537
        • Sellers E.W.
        • Kubler A.
        • Donchin E.
        Brain-computer interface research at the university of south florida cognitive psychophysiology laboratory: the P300 speller.
        IEEE Trans Neural Syst Rehabil Eng. 2006; 14: 221-224
        • Ortner R.
        • Aloise F.
        • Pruckl R.
        • et al.
        Accuracy of a P300 speller for people with motor impairments: a comparison.
        Clin EEG Neurosci. 2011; 42: 214-218
        • Guger C.
        • Edlinger G.
        • Harkam W.
        • Niedermayer I.
        • Pfurtscheller G.
        How many people are able to operate an EEG-based brain-computer interface (BCI)?.
        IEEE Trans Neural Syst Rehabil Eng. 2003; 11: 145-147
        • Guger C.
        • Daban S.
        • Sellers E.
        • et al.
        How many people are able to control a P300-based brain-computer interface (BCI)?.
        Neurosci Lett. 2009; 462: 94-98
        • Hill K.
        • Kovacs T.
        • Shin S.
        Reliability of brain computer interface language sample transcription procedures.
        J Rehabil Res Dev. 2014; 51: 579-590
        • Cook A.M.
        • Hussey S.M.
        Assistive technologies: principles and practice.
        2nd ed. Mosby, St Louis2002
        • McCarty E.
        • Morress C.
        Establishing access to technology: an evaluation and intervention model to increase the participation of children with cerebral palsy.
        Phys Med Rehabil Clin N Am. 2009; 20: 523-534
        • Slater D.
        • Meade M.A.
        Participation in recreation and sports for persons with spinal cord injury: review and recommendations.
        NeuroRehabilitation. 2004; 19: 121-129
        • Huggins J.E.
        • Moinuddin A.A.
        • Chiodo A.E.
        • Wren P.A.
        What would brain-computer interface users want: opinions and priorities of potential users with spinal cord injury.
        Arch Phys Med Rehabil. 2015; 96: S38-S45
      7. Scherer R, Proll M, Allison B, Muller-Putz GR. New input modalities for modern game design and virtual embodiment. In: Proceedings of the IEEE Virtual Reality Conference; 2012 March 4-8; Costa Mesa, CA. p 163-4. Available at: http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6179238. Accessed February 10, 2015.

        • Mason S.G.
        • Bohringer R.
        • Borisoff J.F.
        • Birch G.E.
        Real-time control of a video game with a direct brain–computer interface.
        J Clin Neurophysiol. 2004; 21: 404-408
        • Hasan B.A.
        • Gan J.Q.
        • Hangman B.C.I.
        an unsupervised adaptive self-paced brain-computer interface for playing games.
        Comput Biol Med. 2012; 42: 598-606
        • Holz E.M.
        • Botrel L.
        • Kaufmann T.
        • Kübler A.
        Long-term independent brain-computer interface home use improves quality of life of a patient in the locked-in state: a case study.
        Arch Phys Med Rehabil. 2015; 96: S16-S26
        • Wolf S.L.
        • Winstein C.J.
        • Miller J.P.
        • et al.
        Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial.
        JAMA. 2006; 296: 2095-2104
        • Lo A.C.
        • Guarino P.
        • Krebs H.I.
        • et al.
        Multicenter randomized trial of robot-assisted rehabilitation for chronic stroke: methods and entry characteristics for VA ROBOTICS.
        Neurorehabil Neural Repair. 2009; 23: 775-783
        • Duncan P.W.
        • Sullivan K.J.
        • Behrman A.L.
        • et al.
        Body-weight-supported treadmill rehabilitation after stroke.
        N Engl J Med. 2011; 364: 2026-2036
        • Daly J.J.
        • Zimbelman J.
        • Roenigk K.L.
        • et al.
        Recovery of coordinated gait: randomized controlled stroke trial of functional electrical stimulation (FES) versus no FES, with weight-supported treadmill and over-ground training.
        Neurorehabil Neural Repair. 2011; 25: 588-596
        • Pundik S.
        • Holcomb J.
        • McCabe J.
        • Daly J.J.
        Enhanced life-role participation in response to comprehensive gait training in chronic stroke survivors.
        Disabil Rehabil. 2012; 34: 2264-2271
      8. McCabe J, Monkiewicz M, Holcomb J, Pundik S, Daly JJ. Comparison of robotics, FES, and motor learning methods for treatment of persistent upper extremity dysfunction after stroke: a randomized controlled trial. Arch Phys Med Rehabil 2014 Nov 15. [Epub ahead of print]

        • Tang I.N.
        The effect of repetitive transcranial magnetic stimulation on upper extremity motor function in stroke patients: a meta-analytical review.
        J Food Drug Anal. 2012; 20: 1-5
        • Di Lazzaro V.
        • Rothwell J.C.
        Corticospinal activity evoked and modulated by non-invasive stimulation of the intact human motor cortex.
        J Physiol. 2014; 592: 4115-4128
        • Orban de Xivry J.J.
        • Shadmehr R.
        Electrifying the motor engram: effects of tDCS on motor learning and control.
        Exp Brain Res. 2014; 232: 3379-3395
        • Orban de Xivry J.J.
        • Criscimagna-Hemminger S.E.
        • Shadmehr R.
        Contributions of the motor cortex to adaptive control of reaching depend on the perturbation schedule.
        Cereb Cortex. 2011; 21: 1475-1484
        • Smith M.A.
        • Shadmehr R.
        Intact ability to learn internal models of arm dynamics in huntington's disease but not cerebellar degeneration.
        J Neurophysiol. 2005; 93: 2809-2821
        • Izawa J.
        • Criscimagna-Hemminger S.E.
        • Shadmehr R.
        Cerebellar contributions to reach adaptation and learning sensory consequences of action.
        J Neurosci. 2012; 32: 4230-4239
        • Gibo T.L.
        • Criscimagna-Hemminger S.E.
        • Okamura A.M.
        • Bastian A.J.
        Cerebellar motor learning: are environment dynamics more important than error size?.
        J Neurophysiol. 2013; 110: 322-333
        • Chen H.
        • Hua S.E.
        • Smith M.A.
        • Lenz F.A.
        • Shadmehr R.
        Effects of human cerebellar thalamus disruption on adaptive control of reaching.
        Cereb Cortex. 2006; 16: 1462-1473
        • Le Q.
        • Qu Y.
        • Tao Y.
        • Zhu S.
        Effects of repetitive transcranial magnetic stimulation on hand function recovery and excitability of the motor cortex after stroke: a meta-analysis.
        Am J Phys Med Rehabil. 2014; 93: 422-430
        • Kandel M.
        • Beis J.M.
        • Le Chapelain L.
        • Guesdon H.
        • Paysant J.
        Non-invasive cerebral stimulation for the upper limb rehabilitation after stroke: a review.
        Ann Phys Rehabil Med. 2012; 55: 657-680
        • Zimerman M.
        • Nitsch M.
        • Giraux P.
        • Gerloff C.
        • Cohen L.G.
        • Hummel F.C.
        Neuroenhancement of the aging brain: restoring skill acquisition in old subjects.
        Ann Neurol. 2013; 73: 10-15
        • Hardwick R.M.
        • Celnik P.A.
        Cerebellar direct current stimulation enhances motor learning in older adults.
        Neurobiol Aging. 2014; 35: 2217-2221
        • Khedr E.M.
        • Shawky O.A.
        • El-Hammady D.H.
        • et al.
        Effect of anodal versus cathodal transcranial direct current stimulation on stroke rehabilitation: a pilot randomized controlled trial.
        Neurorehabil Neural Repair. 2013; 27: 592-601
        • Lefebvre S.
        • Thonnard J.L.
        • Laloux P.
        • Peeters A.
        • Jamart J.
        • Vandermeeren Y.
        Single session of dual-tDCS transiently improves precision grip and dexterity of the paretic hand after stroke.
        Neurorehabil Neural Repair. 2014; 28: 100-110
        • Benninger D.H.
        • Lomarev M.
        • Lopez G.
        • et al.
        Transcranial direct current stimulation for the treatment of Parkinson's disease.
        J Neurol Neurosurg Psychiatry. 2010; 81: 1105-1111
        • Verheyden G.
        • Purdey J.
        • Burnett M.
        • Cole J.
        • Ashburn A.
        Immediate effect of transcranial direct current stimulation on postural stability and functional mobility in Parkinson's disease.
        Mov Disord. 2013; 28: 2040-2041
        • Ang K.K.
        • Guan C.
        • Phua K.S.
        • et al.
        Facilitating effects of transcranial direct current stimulation on motor imagery brain-computer interface with robotic feedback for stroke rehabilitation.
        Arch Phys Med Rehabil. 2015; 96: S79-S87
        • Thielscher A.
        • Opitz A.
        • Windhoff M.
        Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation.
        Neuroimage. 2011; 54: 234-243
        • Nummenmaa A.
        • McNab J.A.
        • Savadjiev P.
        • et al.
        Targeting of white matter tracts with transcranial magnetic stimulation.
        Brain Stimul. 2014; 7: 80-84
        • Ruiz S.
        • Lee S.
        • Soekadar S.R.
        • et al.
        Acquired self-control of insula cortex modulates emotion recognition and brain network connectivity in schizophrenia.
        Hum Brain Mapp. 2013; 34: 200-212
        • deCharms RC
        • Maeda F.
        • Glover G.H.
        • et al.
        Control over brain activation and pain learned by using real-time functional MRI.
        Proc Natl Acad Sci U S A. 2005; 102: 18626-18631
        • Schurholz M.
        • Rana M.
        • Robinson N.
        • et al.
        Differences in hemodynamic activations between motor imagery and upper limb FES with NIRS.
        Conf Proc IEEE Eng Med Biol Soc. 2012; 2012: 4728-4731
        • Rea M.
        • Rana M.
        • Lugato N.
        • et al.
        Lower limb movement preparation in chronic stroke: a pilot study toward an fNIRS-BCI for gait rehabilitation.
        Neurorehabil Neural Repair. 2014; 28: 564-575
        • Walker J.E.
        • Kozlowski G.P.
        Neurofeedback treatment of epilepsy.
        Child Adolesc Psychiatr Clin N Am. 2005; 14 (viii): 163-176
        • Kotchoubey B.
        • Strehl U.
        • Uhlmann C.
        • et al.
        Modification of slow cortical potentials in patients with refractory epilepsy: a controlled outcome study.
        Epilepsia. 2001; 42: 406-416
        • Monastra V.J.
        • Lynn S.
        • Linden M.
        • Lubar J.F.
        • Gruzelier J.
        • LaVaque T.J.
        Electroencephalographic biofeedback in the treatment of attention-deficit/hyperactivity disorder.
        Appl Psychophysiol Biofeedback. 2005; 30: 95-114
        • Ang K.K.
        • Guan C.
        • Chua K.S.
        • et al.
        Clinical study of neurorehabilitation in stroke using EEG-based motor imagery brain-computer interface with robotic feedback.
        Conf Proc IEEE Eng Med Biol Soc. 2010; 2010: 5549-5552
        • Daly J.J.
        • Cheng R.
        • Rogers J.
        • Litinas K.
        • Hrovat K.
        • Dohring M.
        Feasibility of a new application of noninvasive brain computer interface (BCI): a case study of training for recovery of volitional motor control after stroke.
        J Neurol Phys Ther. 2009; 33: 203-211
        • Ramos-Murguialday A.
        • Broetz D.
        • Rea M.
        • et al.
        Brain-machine interface in chronic stroke rehabilitation: a controlled study.
        Ann Neurol. 2013; 74: 100-108
        • Page S.J.
        • Fulk G.D.
        • Boyne P.
        Clinically important differences for the upper-extremity fugl-meyer scale in people with minimal to moderate impairment due to chronic stroke.
        Phys Ther. 2012; 92: 791-798
        • Marone G.
        • Pisotta I.
        • Pichiorri F.
        • et al.
        Proof of principle of a brain-computer interface approach to support poststroke arm rehabilitation in hospitalized patients: design, acceptability, and usability.
        Arch Phys Med Rehabil. 2015; 96: S71-S78
        • Meng J.
        • Yao L.
        • Sheng X.
        • Zhang D.
        • Zhu X.
        Simultaneously optimizing spatial spectral features based on mutual information for EEG classification.
        IEEE Trans Biomed Eng. 2015; 62: 227-240
      9. Loza C, Philips G, Hazrati M, Daly JJ, Principe J. Classification of hand movement direction based on EEG high-gamma activity. In: Engineering in Medicine and Biology Society, 36th Annual International Conference of the IEEE; 2014; Chicago, IL. p 6509-12.

        • Liu Y.
        • Li M.
        • Zhang H.
        • et al.
        A tensor-based scheme for stroke patients' motor imagery EEG analysis in BCI-FES rehabilitation training.
        J Neurosci Methods. 2014; 222: 238-249
        • Yeh W.L.
        • Huang Y.C.
        • Chiou J.H.
        • Duann J.R.
        • Chiou J.C.
        A self produced mother wavelet feature extraction method for motor imagery brain-computer interface.
        Conf Proc IEEE Eng Med Biol Soc. 2013; 2013: 4302-4305
        • Zhang H.
        • Liu Y.
        • Liang J.
        • Cao J.
        • Zhang L.
        Gaussian mixture modeling in stroke patients' rehabilitation EEG data analysis.
        Conf Proc IEEE Eng Med Biol Soc. 2013; 2013: 2208-2211
      10. Marquez J, van Vliet P, McElduff P, Lagopoulos J, Parsons M. Transcranial direct current stimulation (tDCS): does it have merit in stroke rehabilitation? A systematic review. Int J Stroke 2013 Oct 22. [Epub ahead of print]

        • Prichard G.
        • Weiller C.
        • Fritsch B.
        • Reis J.
        Effects of different electrical brain stimulation protocols on subcomponents of motor skill learning.
        Brain Stimul. 2014; 7: 532-540
        • Galea J.M.
        • Vazquez A.
        • Pasricha N.
        • de Xivry J.J.
        • Celnik P.
        Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns.
        Cereb Cortex. 2011; 21: 1761-1770
        • Herzfeld D.J.
        • Pastor D.
        • Haith A.M.
        • Rossetti Y.
        • Shadmehr R.
        • O'Shea J.
        Contributions of the cerebellum and the motor cortex to acquisition and retention of motor memories.
        Neuroimage. 2014; 98: 147-158
        • Reis J.
        • Fritsch B.
        Modulation of motor performance and motor learning by transcranial direct current stimulation.
        Curr Opin Neurol. 2011; 24: 590-596
        • Stagg C.J.
        • Best J.G.
        • Stephenson M.C.
        • et al.
        Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation.
        J Neurosci. 2009; 29: 5202-5206
        • Miniussi C.
        • Harris J.A.
        • Ruzzoli M.
        Modelling non-invasive brain stimulation in cognitive neuroscience.
        Neurosci Biobehav Rev. 2013; 37: 1702-1712
        • Folcher M.
        • Oesterle S.
        • Zwicky K.
        • et al.
        Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant.
        Nat Commun. 2014; 5: 5392