Effectiveness, Usability, and Cost-Benefit of a Virtual Reality–Based Telerehabilitation Program for Balance Recovery After Stroke: A Randomized Controlled Trial

  • Roberto Lloréns
    Correspondence
    Corresponding author Roberto Lloréns, PhD, Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
    Affiliations
    Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano, Universitat Politècnica de València, Valencia, Spain

    Servicio de Neurorrehabilitación y Daño Cerebral de los Hospitales NISA, Fundación Hospitales NISA, Valencia, Spain
    Search for articles by this author
  • Enrique Noé
    Affiliations
    Servicio de Neurorrehabilitación y Daño Cerebral de los Hospitales NISA, Fundación Hospitales NISA, Valencia, Spain
    Search for articles by this author
  • Carolina Colomer
    Affiliations
    Servicio de Neurorrehabilitación y Daño Cerebral de los Hospitales NISA, Fundación Hospitales NISA, Valencia, Spain
    Search for articles by this author
  • Mariano Alcañiz
    Affiliations
    Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano, Universitat Politècnica de València, Valencia, Spain

    Ciber, Fisiopatología Obesidad y Nutrición, CB06/03 Instituto de Salud Carlos III, Univesitat Jaume I, Castellón, Spain
    Search for articles by this author
Published:November 13, 2014DOI:https://doi.org/10.1016/j.apmr.2014.10.019

      Highlights

      • Virtual reality–based training can be effectively combined with conventional programs.
      • Telerehabilitation and in-clinic interventions can promote similar motor improvement.
      • Usability and motivation of both interventions can be similar.
      • Telerehabilitation interventions can involve savings that vary depending on each scenario.

      Abstract

      Objectives

      First, to evaluate the clinical effectiveness of a virtual reality (VR)–based telerehabilitation program in the balance recovery of individuals with hemiparesis after stroke in comparison with an in-clinic program; second, to compare the subjective experiences; and third, to contrast the costs of both programs.

      Design

      Single-blind, randomized, controlled trial.

      Setting

      Neurorehabilitation unit.

      Participants

      Chronic outpatients with stroke (N=30) with residual hemiparesis.

      Interventions

      Twenty 45-minute training sessions with the telerehabilitation system, conducted 3 times a week, in the clinic or in the home.

      Main Outcome Measures

      First, Berg Balance Scale for balance assessment. The Performance-Oriented Mobility Assessment balance and gait subscales, and the Brunel Balance Assessment were secondary outcome measures. Clinical assessments were conducted at baseline, 8 weeks (posttreatment), and 12 weeks (follow-up). Second, the System Usability Scale and the Intrinsic Motivation Inventory for subjective experiences. Third, cost (in dollars).

      Results

      Significant improvement in both groups (in-clinic group [control] and a home-based telerehabilitation group) from the initial to the final assessment in the Berg Balance Scale ( η p 2 =.68; P=.001), in the balance ( η p 2 =.24; P=.006) and gait ( η p 2 =.57, P=.001) subscales of the Tinetti Performance-Oriented Mobility Assessment, and in the Brunel Balance Assessment (control: χ 2=15.0; P=.002; experimental: χ 2=21.9; P=.001). No significant differences were found between the groups in any balance scale or in the feedback questionnaires. With regard to subjective experiences, both groups considered the VR system similarly usable and motivating. The in-clinic intervention resulted in more expenses than did the telerehabilitation intervention ($654.72 per person).

      Conclusions

      First, VR-based telerehabilitation interventions can promote the reacquisition of locomotor skills associated with balance in the same way as do in-clinic interventions, both complemented with a conventional therapy program; second, the usability of and motivation to use the 2 interventions can be similar; and third, telerehabilitation interventions can involve savings that vary depending on each scenario.

      Keywords

      List of abbreviations:

      ANOVA ( analysis of variance), BBA ( Brunel Balance Assessment), BBS ( Berg Balance Scale), IMI ( Intrinsic Motivation Inventory), POMA-B ( Performance-Oriented Mobility Assessment balance subscale), POMA-G ( Performance-Oriented Mobility Assessment gait subscale), SUS ( System Usability Scale), VR ( virtual reality)
      To read this article in full you will need to make a payment

      References

        • Go A.S.
        • Mozaffarian D.
        • Roger V.L.
        • et al.
        Heart disease and stroke statistics—2013 update: a report from the American Heart Association.
        Circulation. 2013; 127: e6-e245
        • Nichols-Larsen D.S.
        • Clark P.C.
        • Zeringue A.
        • Greenspan A.
        • Blanton S.
        Factors influencing stroke survivors' quality of life during subacute recovery.
        Stroke. 2005; 36: 1480-1484
        • Jones F.
        Strategies to enhance chronic disease self-management: how can we apply this to stroke?.
        Disabil Rehabil. 2006; 28: 841-847
        • Jorgensen H.S.
        • Nakayama H.
        • Raaschou H.O.
        • Vive-Larsen J.
        • Stoier M.
        • Olsen T.S.
        Outcome and time course of recovery in stroke, part II: time course of recovery. The Copenhagen Stroke Study.
        Arch Phys Med Rehabil. 1995; 76: 406-412
        • Jorgensen H.S.
        • Nakayama H.
        • Raaschou H.O.
        • Vive-Larsen J.
        • Stoier M.
        • Olsen T.S.
        Outcome and time course of recovery in stroke, part I: outcome. The Copenhagen Stroke Study.
        Arch Phys Med Rehabil. 1995; 76: 399-405
        • Cicerone K.D.
        • Langenbahn D.M.
        • Braden C.
        • et al.
        Evidence-based cognitive rehabilitation: updated review of the literature from 2003 through 2008.
        ArchPhys Med Rehabil. 2011; 92: 519-530
        • Ferrarello F.
        • Baccini M.
        • Rinaldi L.A.
        • et al.
        Efficacy of physiotherapy interventions late after stroke: a meta-analysis.
        J Neurol Neurosurg Psychiatry. 2011; 82: 136-143
        • Geurtsen G.J.
        • van Heugten C.M.
        • Martina J.D.
        • Geurts A.C.
        Comprehensive rehabilitation programmes in the chronic phase after severe brain injury: a systematic review.
        J Rehabil Med. 2010; 42: 97-110
        • Dimyan M.A.
        • Cohen L.G.
        Neuroplasticity in the context of motor rehabilitation after stroke: nature reviews.
        Neurology. 2011; 7: 76-85
        • Hailey D.
        • Roine R.
        • Ohinmaa A.
        • Dennett L.
        The status of telerehabilitation in neurological applications.
        J Telemed Telecare. 2013; 19: 307-310
        • Parra C.
        • Jodar-Sanchez F.
        • Jimenez-Hernandez M.D.
        • et al.
        Development, implementation, and evaluation of a telemedicine service for the treatment of acute stroke patients: TeleStroke.
        Interact J Med Res. 2012; 1: e15
        • Gil-Gomez J.A.
        • Llorens R.
        • Alcaniz M.
        • Colomer C.
        Effectiveness of a Wii balance board-based system (eBaViR) for balance rehabilitation: a pilot randomized clinical trial in patients with acquired brain injury.
        J Neuroeng Rehabil. 2011; 8: 30
        • Laver K.
        • George S.
        • Thomas S.
        • Deutsch J.E.
        • Crotty M.
        Cochrane review: virtual reality for stroke rehabilitation.
        Eur J Phys Rehabil Med. 2012; 48: 523-530
        • You S.H.
        • Jang S.H.
        • Kim Y.H.
        • et al.
        Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study.
        Stroke. 2005; 36: 1166-1171
        • Linder S.M.
        • Reiss A.
        • Buchanan S.
        • et al.
        Incorporating robotic-assisted telerehabilitation in a home program to improve arm function following stroke.
        J Neurolog Phys Ther. 2013; 37: 125-132
        • Holden M.K.
        • Dyar T.A.
        • Dayan-Cimadoro L.
        Telerehabilitation using a virtual environment improves upper extremity function in patients with stroke.
        IEEE Trans Neural Syst Rehabil Eng. 2007; 15: 36-42
        • Deutsch J.E.
        • Lewis J.A.
        • Burdea G.
        Technical and patient performance using a virtual reality-integrated telerehabilitation system: preliminary finding.
        IEEE Trans Neural Syst Rehabil Eng. 2007; 15: 30-35
        • Krpic A.
        • Savanovic A.
        • Cikajlo I.
        Telerehabilitation: remote multimedia-supported assistance and mobile monitoring of balance training outcomes can facilitate the clinical staff's effort.
        Int J Rehabil Res. 2013; 36: 162-171
        • Tyson S.F.
        • DeSouza L.H.
        Development of the Brunel Balance Assessment: a new measure of balance disability post stroke.
        Clin Rehabil. 2004; 18: 801-810
        • Folstein M.F.
        • Folstein S.E.
        • McHugh P.R.
        “Mini-Mental State”: a practical method for grading the cognitive state of patients for the clinician.
        J Psychiatr Res. 1975; 12: 189-198
        • Romero M.
        • Sanchez A.
        • Marin C.
        • Navarro M.D.
        • Ferri J.
        • Noe E.
        Clinical usefulness of the Spanish version of the Mississippi Aphasia Screening Test (MASTsp): validation in stroke patients.
        Neurologia. 2012; 27 ([in Spanish]): 216-224
        • Berg K.O.
        • Wood-Dauphinee S.L.
        • Williams J.I.
        • Maki B.
        Measuring balance in the elderly: validation of an instrument.
        Can J Public Health. 1992; 83: S7-S11
        • Tinetti M.E.
        Performance-oriented assessment of mobility problems in elderly patients.
        J Am Geriatr Soc. 1986; 34: 119-126
        • Brooke J.
        SUS: a quick and dirty usability scale.
        in: Jordan P.W. Weerdmeester B. Thomas A. McLelland I.L. Usability evaluation in industry. Taylor & Francis, London1996 (p 189-94)
        • McAuley E.
        • Duncan T.
        • Tammen V.V.
        Psychometric properties of the Intrinsic Motivation Inventory in a competitive sport setting: a confirmatory factor analysis.
        Res Q Exerc Sport. 1989; 60: 48-58
        • Liston R.A.
        • Brouwer B.J.
        Reliability and validity of measures obtained from stroke patients using the Balance Master.
        Arch Phys Med Rehabil. 1996; 77: 425-430
        • Llorens R.
        • Alcaniz M.
        • Colomer C.
        • Navarro M.D.
        Balance recovery through virtual stepping exercises using Kinect skeleton tracking: a follow-up study with chronic stroke patients.
        Stud Health Technol Inform. 2012; 181: 108-112
        • Llorens R.
        • Colomer-Font C.
        • Alcaniz M.
        • Noe-Sebastian E.
        BioTrak virtual reality system: effectiveness and satisfaction analysis for balance rehabilitation in patients with brain injury.
        Neurologia. 2013; 28: 268-275
        • Lloréns R.
        • Gil-Gómez J.-A.
        • Alcañiz M.
        • Colomer C.
        • Noé E.
        Improvement in balance using a virtual reality-based stepping exercise: a randomized controlled trial involving individuals with chronic stroke.
        Clin Rehabil. 2014 Jul 23; ([Epub ahead of print])
        • Laver K.E.
        • George S.
        • Thomas S.
        • Deutsch J.E.
        • Crotty M.
        Virtual reality for stroke rehabilitation.
        Cochrane Database Syst Rev. 2011; : CD008349
        • Hung J.W.
        • Chou C.X.
        • Hsieh Y.W.
        • et al.
        Randomized comparison trial of balance training by using exergaming and conventional weight-shifting therapy in patients with chronic stroke.
        Arch Phys Med Rehabil. 2014; 95: 1629-1637

      Linked Article