Advertisement
Original article| Volume 96, ISSUE 3, P511-517, March 2015

Biomechanical and Clinical Correlates of Swing-Phase Knee Flexion in Individuals With Spastic Cerebral Palsy Who Walk With Flexed-Knee Gait

  • Dong-Wook Rha
    Affiliations
    Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA

    Motion & Gait Analysis Laboratory, Lucile Packard Children's Hospital, Palo Alto, CA

    Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
    Search for articles by this author
  • Katelyn Cahill-Rowley
    Correspondence
    Corresponding author Katelyn Cahill-Rowley, MS, 770 Welch Rd, Ste 400, Stanford, CA 94304.
    Affiliations
    Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA

    Motion & Gait Analysis Laboratory, Lucile Packard Children's Hospital, Palo Alto, CA

    Department of Bioengineering, Stanford University, Stanford, CA
    Search for articles by this author
  • Jeffrey Young
    Affiliations
    Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA

    Motion & Gait Analysis Laboratory, Lucile Packard Children's Hospital, Palo Alto, CA
    Search for articles by this author
  • Leslie Torburn
    Affiliations
    Motion & Gait Analysis Laboratory, Lucile Packard Children's Hospital, Palo Alto, CA
    Search for articles by this author
  • Katherine Stephenson
    Affiliations
    Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA

    Motion & Gait Analysis Laboratory, Lucile Packard Children's Hospital, Palo Alto, CA

    Department of Mechanical Engineering, Stanford University, Stanford, CA
    Search for articles by this author
  • Jessica Rose
    Affiliations
    Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA

    Motion & Gait Analysis Laboratory, Lucile Packard Children's Hospital, Palo Alto, CA
    Search for articles by this author
Published:October 30, 2014DOI:https://doi.org/10.1016/j.apmr.2014.09.039

      Abstract

      Objective

      To identify clinical and biomechanical parameters that influence swing-phase knee flexion and contribute to stiff-knee gait in individuals with spastic cerebral palsy (CP) and flexed-knee gait.

      Design

      Retrospective analysis of clinical data and gait kinematics collected from 2010 to 2013.

      Setting

      Motion and gait analysis laboratory at a children's hospital.

      Participants

      Individuals with spastic CP (N=34; 20 boys, 14 girls; mean age ± SD, 10.1±4.1y [range, 5–20y]; Gross Motor Function Classification System I–III) who walked with flexed-knee gait ≥20° at initial contact and had no prior surgery were included; the more-involved limb was analyzed.

      Intervention

      Not applicable.

      Main Outcome Measures

      The magnitude and timing of peak knee flexion (PKF) during swing were analyzed with respect to clinical data, including passive range of motion and Selective Control Assessment of the Lower Extremity, and biomechanical data, including joint kinematics and hamstring, rectus femoris, and gastrocnemius muscle-tendon length during gait.

      Results

      Data from participants demonstrated that achieving a higher magnitude of PKF during swing correlated with a higher maximum knee flexion velocity in swing (ρ=.582, P<0.001) and a longer maximum length of the rectus femoris (ρ=.491, P=.003). In contrast, attaining earlier timing of PKF during swing correlated with a higher knee flexion velocity at toe-off (ρ=−.576, P<.001), a longer maximum length of the gastrocnemius (ρ=−.355, P=.039), and a greater peak knee extension during single-limb support phase (ρ=−.354, P=.040).

      Conclusions

      Results indicate that the magnitude and timing of PKF during swing were independent, and their biomechanical correlates differed, suggesting important treatment implications for both stiff-knee and flexed-knee gait.

      Keywords

      List of abbreviations:

      CP (cerebral palsy), PKF (peak knee flexion), SCALE (Selective Control Assessment of the Lower Extremity), SLS (single-limb support)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Archives of Physical Medicine and Rehabilitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wren T.A.
        • Rethlefsen S.
        • Kay R.M.
        Prevalence of specific gait abnormalities in children with cerebral palsy.
        J Pediatr Orthop. 2005; 25: 79-83
        • Sutherland D.H.
        • Davids J.R.
        Common gait abnormalities of the knee in cerebral palsy.
        Clin Orthop Relat Res. 1993;288; : 139-147
        • Jonkers I.
        • Stewart C.
        • Desloovere K.
        • Molenaers G.
        • Spaepen A.
        Musculo-tendon length and lengthening velocity of rectus femoris in stiff knee gait.
        Gait Posture. 2006; 23: 222-229
        • Reinbolt J.A.
        • Fox M.D.
        • Schwartz M.H.
        • Delp S.L.
        Predicting outcomes of rectus femoris transfer surgery.
        Gait Posture. 2009; 30: 100-105
        • Reinbolt J.A.
        • Fox M.D.
        • Arnold A.S.
        • Ounpuu S.
        • Delp S.L.
        Importance of preswing rectus femoris activity in stiff-knee gait.
        J Biomech. 2008; 41: 2362-2369
        • Knuppe A.E.
        • Bishop N.A.
        • Clark A.J.
        • Alderink G.J.
        • Barr K.M.
        • Miller A.L.
        Prolonged swing phase rectus femoris activity is not associated with stiff-knee gait in children with cerebral palsy: a retrospective study of 407 limbs.
        Gait Posture. 2013; 37: 345-348
        • Piazza S.J.
        • Delp S.L.
        The influence of muscles on knee flexion during the swing phase of gait.
        J Biomech. 2003; 29: 723-733
        • Anderson F.C.
        • Goldberg S.R.
        • Pandy M.G.
        • Delp S.L.
        Contributions of muscle forces and toe-off kinematics to peak knee flexion during the swing phase of normal gait: an induced position analysis.
        J Biomech. 2004; 37: 731-737
        • van der Krogt M.M.
        • Bregman D.J.
        • Wisse M.
        • Doorenbosch C.A.
        • Harlaar J.
        • Collins S.H.
        How crouch gait can dynamically induce stiff-knee gait.
        Ann Biomed Eng. 2010; 38: 1593-1606
        • Rosenbaum P.L.
        • Palisano R.J.
        • Bartlett D.J.
        • Galuppi B.E.
        • Russell D.J.
        Development of the Gross Motor Function Classification System for cerebral palsy.
        Dev Med Child Neurol. 2008; 50: 249-253
        • Thompson N.S.
        • Baker R.J.
        • Cosgrove A.P.
        • Saunders J.L.
        • Taylor T.C.
        Relevance of the popliteal angle to hamstring length in cerebral palsy crouch gait.
        J Pediatr Orthop. 2001; 21: 383-387
        • Fowler E.G.
        • Staudt L.A.
        • Greenberg M.B.
        • Oppenheim W.L.
        Selective Control Assessment of the Lower Extremity (SCALE): development, validation, and interrater reliability of a clinical tool for patients with cerebral palsy.
        Dev Med Child Neurol. 2009; 51: 607-614
        • Arnold E.M.
        • Ward S.R.
        • Lieber R.L.
        • Delp S.L.
        A model of the lower limb for analysis of human movement.
        Ann Biomed Eng. 2010; 38: 269-279
        • Ward S.R.
        • Eng C.M.
        • Smallwood L.H.
        • Lieber R.L.
        Are current measurements of lower extremity muscle architecture accurate?.
        Clin Orthop Relat Res. 2008; 467: 1074-1082
        • Delp S.L.
        • Anderson F.C.
        • Arnold A.S.
        • et al.
        OpenSim: open-source software to create and analyze dynamic simulations of movement.
        IEEE Trans Biomed Eng. 2007; 54: 1940-1950
        • Lu T.W.
        • O'Connor J.J.
        Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints.
        J Biomech. 1999; 32: 129-134
        • Hoffinger S.A.
        • Rab G.T.
        • Abou-Ghaida H.
        Hamstrings in cerebral palsy crouch gait.
        J Pediatr Orthop. 1993; 13: 722-726
        • Fox M.D.
        • Delp S.L.
        Contributions of muscles and passive dynamics to swing initiation over a range of walking speeds.
        J Biomech. 2010; 43: 1450-1455
        • Goldberg S.R.
        • Ounpuu S.
        • Arnold A.S.
        • Gage J.R.
        • Delp S.L.
        Kinematic and kinetic factors that correlate with improved knee flexion following treatment for stiff-knee gait.
        J Biomech. 2006; 39: 689-698
        • Goldberg S.R.
        • Ounpuu S.
        • Delp S.L.
        The importance of swing-phase initial conditions in stiff-knee gait.
        J Biomech. 2003; 36: 1111-1116
        • Yuen T.J.
        • Orendurff M.S.
        A comparison of gastrocnemius muscle-tendon unit length during gait using anatomic, cadaveric and MRI models.
        Gait Posture. 2006; 23: 112-117