Advertisement

Noninvasive and Painless Magnetic Stimulation of Nerves Improved Brain Motor Function and Mobility in a Cerebral Palsy Case

  • Véronique H. Flamand
    Correspondence
    Corresponding author Véronique H. Flamand, OT, MSc, Centre de recherche du CHU de Québec, Axe Neurosciences, 2705 boul. Laurier, RC-9800, Québec, QC, Canada, G1V 4G2.
    Affiliations
    Neuroscience Division, CHU de Québec Research Center, Québec, QC, Canada

    Faculty of Medicine, Université Laval, Québec, QC, Canada
    Search for articles by this author
  • Cyril Schneider
    Affiliations
    Neuroscience Division, CHU de Québec Research Center, Québec, QC, Canada

    Department of Rehabilitation, Faculty of Medicine, Université Laval, Québec, QC, Canada
    Search for articles by this author

      Abstract

      Motor deficits in cerebral palsy disturb functional independence. This study tested whether noninvasive and painless repetitive peripheral magnetic stimulation could improve motor function in a 7-year-old boy with spastic hemiparetic cerebral palsy. Stimulation was applied over different nerves of the lower limbs for 5 sessions. We measured the concurrent aftereffects of this intervention on ankle motor control, gait (walking velocity, stride length, cadence, cycle duration), and function of brain motor pathways. We observed a decrease of ankle plantar flexors resistance to stretch, an increase of active dorsiflexion range of movement, and improvements of corticospinal control of ankle dorsiflexors. Joint mobility changes were still present 15 days after the end of stimulation, when all gait parameters were also improved. Resistance to stretch was still lower than prestimulation values 45 days after the end of stimulation. This case illustrates the sustained effects of repetitive peripheral magnetic stimulation on brain plasticity, motor function, and gait. It suggests a potential impact for physical rehabilitation in cerebral palsy.

      Keywords

      List of abbreviations:

      AMT (active motor threshold), CP (cerebral palsy), MEP (motor-evoked potential), MVC (maximal voluntary contraction), M1 (primary motor cortex), PNS (peripheral nerve stimulation), rPMS (repetitive peripheral magnetic stimulation), TA (tibialis anterior), TMS (transcranial magnetic stimulation)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Archives of Physical Medicine and Rehabilitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nielsen J.B.
        • Crone C.
        • Hultborn H.
        The spinal pathophysiology of spasticity–from a basic science point of view.
        Acta Physiol. 2007; 189: 171-180
        • Rosenbaum P.
        • Paneth N.
        • Leviton A.
        • et al.
        A report: the definition and classification of cerebral palsy April 2006.
        Dev Med Child Neurol Suppl. 2007; 109: 8-14
        • Engel-Yeger B.
        • Jarus T.
        • Anaby D.
        • Law M.
        Differences in patterns of participation between youths with cerebral palsy and typically developing peers.
        Am J Occup Ther. 2009; 63: 96-104
        • Struppler A.
        • Havel P.
        • Muller-Barna P.
        Facilitation of skilled finger movements by repetitive peripheral magnetic stimulation (RPMS) - a new approach in central paresis.
        NeuroRehabilitation. 2003; 18: 69-82
        • Struppler A.
        • Binkofski F.
        • Angerer B.
        • et al.
        A fronto-parietal network is mediating improvement of motor function related to repetitive peripheral magnetic stimulation: a PET-H2O15 study.
        Neuroimage. 2007; 36: T174-T186
        • Struppler A.
        • Angerer B.
        • Havel P.
        Modulation of sensorimotor performances and cognition abilities induced by RPMS: clinical and experimental investigations.
        Suppl Clin Neurophysiol. 2003; 56: 358-367
        • Krause P.
        • Straube A.
        Reduction of spastic tone increase induced by peripheral repetitive magnetic stimulation is frequency-independent.
        NeuroRehabilitation. 2005; 20: 63-65
        • Krause P.
        • Edrich T.
        • Straube A.
        Lumbar repetitive magnetic stimulation reduces spastic tone increase of the lower limbs.
        Spinal Cord. 2004; 42: 67-72
        • Nielsen J.F.
        • Sinkjaer T.
        Long-lasting depression of soleus motoneurons excitability following repetitive magnetic stimuli of the spinal cord in multiple sclerosis patients.
        Mult Scler. 1997; 3: 18-30
        • Beaulieu L.D.
        • Schneider C.
        Effects of repetitive peripheral magnetic stimulation on normal or impaired motor control. A review.
        Neurophysiol Clin. 2013; 43: 251-260
        • Struppler A.
        • Angerer B.
        • Gundisch C.
        • Havel P.
        Modulatory effect of repetitive peripheral magnetic stimulation on skeletal muscle tone in healthy subjects: stabilization of the elbow joint.
        Exp Brain Res. 2004; 157: 59-66
        • Heldmann B.
        • Kerkhoff G.
        • Struppler A.
        • Havel P.
        • Jahn T.
        Repetitive peripheral magnetic stimulation alleviates tactile extinction.
        Neuroreport. 2000; 11: 3193-3198
        • Kerkhoff G.
        • Heldmann B.
        • Struppler A.
        • Havel P.
        • Jahn T.
        The effects of magnetic stimulation and attentional cueing on tactile extinction.
        Cortex. 2001; 37: 719-723
        • Krause P.
        • Straube A.
        Peripheral repetitive magnetic stimulation induces intracortical inhibition in healthy subjects.
        Neurol Res. 2008; 30: 690-694
        • Flamand V.H.
        • Beaulieu L.D.
        • Nadeau L.
        • Schneider C.
        Peripheral magnetic stimulation to decrease spasticity in cerebral palsy.
        Pediatr Neurol. 2012; 47: 345-348
        • Drouin L.M.
        • Malouin F.
        • Richards C.L.
        • Marcoux S.
        Correlation between the gross motor function measure scores and gait spatiotemporal measures in children with neurological impairments.
        Dev Med Child Neurol. 1996; 38: 1007-1019
        • Boiteau M.
        • Malouin F.
        • Richards C.L.
        Use of a hand-held dynamometer and a Kin-Com dynamometer for evaluating spastic hypertonia in children: a reliability study.
        Phys Ther. 1995; 75: 796-802
        • Bashir S.
        • Mizrahi I.
        • Weaver K.
        • Fregni F.
        • Pascual-Leone A.
        Assessment and modulation of neural plasticity in rehabilitation with transcranial magnetic stimulation.
        PM R. 2010; 2: S253-S268
        • Rothwell J.C.
        Techniques and mechanisms of action of transcranial stimulation of the human motor cortex.
        J Neurosci Methods. 1997; 74: 113-122
        • Lin K.L.
        • Pascual-Leone A.
        Transcranial magnetic stimulation and its applications in children.
        Chang Gung Med J. 2002; 25: 424-436
        • Rossi S.
        • Hallett M.
        • Rossini P.M.
        • Pascual-Leone A.
        Safety of TMSCG Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research.
        Clin Neurophysiol. 2009; 120: 2008-2039
        • Niskanen E.
        • Julkunen P.
        • Säisänen L.
        • Vanninen R.
        • Karjalainen P.
        • Könönen M.
        Group-level variations in motor representation areas of thenar and anterior tibial muscles: Navigated Transcranial Magnetic Stimulation Study.
        Hum Brain Mapp. 2010; 31: 1272-1280
        • Klem G.H.
        • Lüders H.O.
        • Jasper H.H.
        • Elger C.
        The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology.
        Electroencephalogr Clin Neurophysiol Suppl. 1999; 52: 3-6
        • Devanne H.
        • Lavoie B.A.
        • Capaday C.
        Input-output properties and gain changes in the human corticospinal pathway.
        Exp Brain Res. 1997; 114: 329-338
        • Schneider C.
        • Lavoie B.A.
        • Barbeau H.
        • Capaday C.
        Timing of cortical excitability changes during the reaction time of movements superimposed on tonic motor activity.
        J Appl Physiol. 2004; 97: 2220-2227
        • Huang Y.Z.
        • Edwards M.J.
        • Rounis E.
        • Bhatia K.P.
        • Rothwell J.C.
        Theta burst stimulation of the human motor cortex.
        Neuron. 2005; 45: 201-206
        • Maccabee P.J.
        • Eberle L.
        • Amassian V.E.
        • Cracco R.Q.
        • Rudell A.
        • Jayachandra M.
        Spatial distribution of the electric field induced in volume by round and figure ‘8' magnetic coils: relevance to activation of sensory nerve fibers.
        Electroencephalogr Clin Neurophysiol. 1990; 76: 131-141
        • Gormley M.E.
        Treatment of neuromuscular and musculoskeletal problems in cerebral palsy.
        Pediatr Rehabil. 2001; 4: 5-16
        • Engsberg J.R.
        • Ross S.A.
        • Olree K.S.
        • Park T.S.
        Ankle spasticity and strength in children with spastic diplegic cerebral palsy.
        Dev Med Child Neurol. 2000; 42: 42-47
      1. Transformational technologies in single-event neurological conditions: applying lessons learned in stroke to cerebral palsy (August 14-15, 2008).
        Neurorehabil Neural Repair. 2009; 23: 747-765
        • Hägglund G.
        • Wagner P.
        Spasticity of the gastrosoleus muscle is related to the development of reduced passive dorsiflexion of the ankle in children with cerebral palsy: a registry analysis of 2,796 examinations in 355 children.
        Acta Orthop. 2011; 82: 744-748
        • Havel P.
        • Struppler A.
        First steps in functional magnetic stimulation (FMS)-movements of forearm and fingers induced by closed-loop controlled FMS.
        Acta Physiol Pharmacol Bulg. 2001; 26: 185-188
        • Marz-Loose H.
        • Siemes H.
        [Repetitive peripheral magnetic stimulation. Treatment option for spasticity?].
        Nervenarzt. 2009; 80 ([German]): 1489-1495
        • Amassian V.E.
        • Stewart M.
        • Quirk G.J.
        • Rosenthal J.L.
        Physiological basis of motor effects of a transient stimulus to cerebral cortex.
        Neurosurgery. 1987; 20: 74-93
        • Volz L.J.
        • Hamada M.
        • Rothwell J.C.
        • Grefkes C.
        What makes the muscle twitch: motor system connectivity and TMS-induced activity.
        Cereb Cortex. 2014 Mar 7; ([Epub ahead of print])
        • Gentner R.
        • Wankerl K.
        • Reinsberger C.
        • Zeller D.
        • Classen J.
        Depression of human corticospinal excitability induced by magnetic theta-burst stimulation: evidence of rapid polarity-reversing metaplasticity.
        Cereb Cortex. 2008; 18: 2046-2053
        • Krause P.
        • Foerderreuther S.
        • Straube A.
        Effects of conditioning peripheral repetitive magnetic stimulation in patients with complex regional pain syndrome.
        Neurol Res. 2005; 27: 412-417
        • Sheean G.
        The pathophysiology of spasticity.
        Eur J Neurol. 2002; 9 (discussion 53-61): 3-9
        • Behrens M.
        • Mau-Möller A.
        • Zschorlich V.
        • Bruhn S.
        Repetitive peripheral magnetic stimulation (15 Hz RPMS) of the human soleus muscle did not affect spinal excitability.
        J Sports Sci Med. 2011; 10: 39-44
        • Schuhfried O.
        • Crevenna R.
        • Fialka-Moser V.
        • Paternostro-Sluga T.
        Non-invasive neuromuscular electrical stimulation in patients with central nervous system lesions: an educational review.
        J Rehabil Med. 2012; 44: 99-105
        • Carmick J.
        Clinical use of neuromuscular electrical stimulation for children with cerebral palsy, Part 2: Upper extremity.
        Phys Ther. 1993; 73: 514-517
        • Durham S.
        • Eve L.
        • Stevens C.
        • Ewins D.
        Effect of functional electrical stimulation on asymmetries in gait of children with hemiplegic cerebral palsy.
        Physiotherapy. 2004; 90: 82-90
        • Kerr C.
        • McDowell B.
        • McDonough S.
        Electrical stimulation in cerebral palsy: a review of effects on strength and motor function.
        Dev Med Child Neurol. 2004; 46: 205-213
      2. Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 2000;123 Pt 3:572-84.

        • Stefan K.
        • Kunesch E.
        • Benecke R.
        • Cohen L.G.
        • Classen J.
        Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation.
        J Physiol. 2002; 543: 699-708
        • Conforto A.B.
        • Kaelin-Lang A.
        • Cohen L.G.
        Increase in hand muscle strength of stroke patients after somatosensory stimulation.
        Ann Neurol. 2002; 51: 122-125
        • Celnik P.
        • Hummel F.
        • Harris-Love M.
        • Wolk R.
        • Cohen L.G.
        Somatosensory stimulation enhances the effects of training functional hand tasks in patients with chronic stroke.
        Arch Phys Med Rehabil. 2007; 88: 1369-1376
        • Ridding M.C.
        • Uy J.
        Changes in motor cortical excitability induced by paired associative stimulation.
        Clin Neurophysiol. 2003; 114: 1437-1444
        • Castel-Lacanal E.
        • Gerdelat-Mas A.
        • Marque P.
        • Loubinoux I.
        • Simonetta-Moreau M.
        Induction of cortical plastic changes in wrist muscles by paired associative stimulation in healthy subjects and post-stroke patients.
        Exp Brain Res. 2007; 180: 113-122
        • Lotz B.P.
        • Dunne J.W.
        • Daube J.R.
        Preferential activation of muscle fibers with peripheral magnetic stimulation of the limb.
        Muscle Nerve. 1989; 12: 636-639
        • Evans B.A.
        Magnetic stimulation of the peripheral nervous system.
        J Clin Neurophysiol. 1991; 8: 77-84
        • Zhu Y.
        • Starr A.
        Magnetic stimulation of muscle evokes cerebral potentials.
        Muscle Nerve. 1991; 14: 721-732
        • Dobkin B.H.
        • Firestine A.
        • West M.
        • Saremi K.
        • Woods R.
        Ankle dorsiflexion as an fMRI paradigm to assay motor control for walking during rehabilitation.
        Neuroimage. 2004; 23: 370-381
        • Schneider C.
        • Lavoie B.A.
        • Capaday C.
        On the origin of the soleus H-reflex modulation pattern during human walking and its task-dependent differences.
        J Neurophysiol. 2000; 83: 2881-2890
        • Davids J.R.
        • Rowan F.
        • Davis R.B.
        Indications for orthoses to improve gait in children with cerebral palsy.
        J Am Acad Orthop Surg. 2007; 15: 178-188
        • Hultborn H.
        • Nielsen J.B.
        Spinal control of locomotion–from cat to man.
        Acta Physiol (Oxf). 2007; 189: 111-121
        • Thompson P.D.
        • Nutt J.G.
        Higher level gait disorders.
        J Neural Transm. 2007; 114: 1305-1307
        • Lamy J.C.
        • Wargon I.
        • Mazevet D.
        • Ghanim Z.
        • Pradat-Diehl P.
        • Katz R.
        Impaired efficacy of spinal presynaptic mechanisms in spastic stroke patients.
        Brain. 2009; 132: 734-748