Original article| Volume 95, ISSUE 6, P1083-1092, June 2014

Trajectories in the Course of Body Mass Index After Spinal Cord Injury

Published:February 19, 2014DOI:



      To identify different trajectories of the course of body mass index (BMI) after spinal cord injury (SCI) and to study whether other cardiovascular risk factors (blood pressure, lipid profile) follow the same trajectories.


      Multicenter prospective cohort study with measurements at the start of active rehabilitation, after 3 months, at discharge, and 1 and 5 years after discharge.


      Rehabilitation centers.


      Persons with a recent SCI (N=204).


      Not applicable.

      Main Outcome Measure

      BMI trajectories.


      Three BMI trajectories were identified: (1) a favorable stable BMI during and after rehabilitation (±22–23kg/m2) (54%); (2) a higher but stable BMI during inpatient rehabilitation (±24kg/m2) and an increase after discharge (up to 29kg/m2) (38%); and (3) an increase in BMI during inpatient rehabilitation (from ±23 up to 28kg/m2) and leveling off after discharge (8%). Profile analyses showed that an unfavorable change in BMI was not accompanied by clear unfavorable changes in blood pressure or lipid levels.


      BMI in people with SCI follows distinct trajectories. Monitoring body mass, food intake, and daily physical activity during and especially after inpatient SCI rehabilitation is important to prevent obesity and related cardiovascular risk factors.


      List of abbreviations:

      AIC (Akaike information criterion), ANOVA (analysis of variance), BMI (body mass index), HDL (high-density lipoprotein), LCGMM (latent class growth (mixture) model), LDL (low-density lipoprotein), SCI (spinal cord injury)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Archives of Physical Medicine and Rehabilitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Buchholz A.C.
        • Pencharz P.B.
        Energy expenditure in chronic spinal cord injury.
        Curr Opin Clin Nutr Metab Care. 2004; 7: 635-639
        • van den Berg-Emons R.J.
        • Bussmann J.B.
        • Haisma J.A.
        • et al.
        A prospective study on physical activity levels after spinal cord injury during inpatient rehabilitation and the year after discharge.
        Arch Phys Med Rehabil. 2008; 89: 2094-2101
        • Buchholz A.C.
        • Martin Ginis K.A.
        • Bray S.R.
        • et al.
        Greater daily leisure time physical activity is associated with lower chronic disease risk in adults with spinal cord injury.
        Appl Physiol Nutr Metab. 2009; 34: 640-647
        • de Groot S.
        • Dallmeijer A.J.
        • Post M.W.
        • Angenot E.L.
        • van den Berg-Emons R.J.
        • Van Der Woude L.H.
        Prospective analysis of lipid profiles in persons with a spinal cord injury during and 1 year after inpatient rehabilitation.
        Arch Phys Med Rehabil. 2008; 89: 531-537
        • Rexrode K.M.
        • Manson J.E.
        • Hennekens C.H.
        Obesity and cardiovascular disease.
        Curr Opin Cardiol. 1996; 11: 490-495
        • Elsner J.J.
        • Gefen A.
        Is obesity a risk factor for deep tissue injury in patients with spinal cord injury?.
        J Biomech. 2008; 41: 3322-3331
        • Boninger M.L.
        • Cooper R.A.
        • Baldwin M.A.
        • Shimada S.D.
        • Koontz A.
        Wheelchair pushrim kinetics: body weight and median nerve function.
        Arch Phys Med Rehabil. 1999; 80: 910-915
        • van Drongelen S.
        • de Groot S.
        • Veeger H.E.
        • et al.
        Upper extremity musculoskeletal pain during and after rehabilitation in wheelchair-using persons with a spinal cord injury.
        Spinal Cord. 2006; 44: 152-159
        • van der Woude L.H.
        • De Groot S.
        • Postema K.
        • Bussmann J.B.
        • Janssen T.W.
        • Post M.W.
        Active LifestyLe Rehabilitation interventions in aging spinal cord injury (ALLRISC): a multicentre research program.
        Disabil Rehabil. 2013; 35: 1097-1103
        • de Groot S.
        • Post M.W.
        • Postma K.
        • Sluis T.A.
        • Van Der Woude L.H.
        Prospective analysis of body mass index during and up to 5 years after discharge from inpatient spinal cord injury rehabilitation.
        J Rehabil Med. 2010; 42: 922-928
        • Crane D.A.
        • Little J.W.
        • Burns S.P.
        Weight gain following spinal cord injury: a pilot study.
        J Spinal Cord Med. 2011; 34: 227-232
        • Flank P.
        • Wahman K.
        • Levi R.
        • Fahlstrom M.
        Prevalence of risk factors for cardiovascular disease stratified by body mass index categories in patients with wheelchair-dependent paraplegia after spinal cord injury.
        J Rehabil Med. 2012; 44: 440-443
        • de Groot S.
        • Dallmeijer A.J.
        • Post M.W.
        • et al.
        Demographics of the Dutch multicenter prospective cohort study 'Restoration of mobility in spinal cord injury rehabilitation'.
        Spinal Cord. 2006; 44: 668-675
        • van Leeuwen C.M.
        • Post M.W.
        • Hoekstra T.
        • et al.
        Trajectories in the course of life satisfaction after spinal cord injury: identification and predictors.
        Arch Phys Med Rehabil. 2011; 92: 207-213
        • Laughton G.E.
        • Buchholz A.C.
        • Martin Ginis K.A.
        • Goy R.E.
        Lowering body mass index cutoffs better identifies obese persons with spinal cord injury.
        Spinal Cord. 2009; 47: 757-762
        • Friedewald W.T.
        • Levy R.I.
        • Fredrickson D.S.
        Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge.
        Clin Chem. 1972; 18: 499-502
        • Jung T.
        • Wickrama K.A.
        An introduction to latent class growth analysis and growth mixture modeling.
        Soc Personal Psychol Compass. 2008; 2: 302-317
        • Singer J.D.
        • Willett J.B.
        Applied longitudinal data analysis: modeling change and event occurrence.
        1st ed. Oxford Univ Pr, New York2003
        • Muthén L.K.
        • Muthén B.O.
        Mplus user's guide.
        7th ed. Muthén & Muthén, Los Angeles2010
        • Nylund K.L.
        • Asparouhov T.
        • Muthén B.O.
        Deciding on the number of classes in latent class analysis and growth mixture modeling: a Monte Carlo simulation study.
        Struct Equ Modeling. 2001; 14: 535-569
        • Twisk J.
        Applied longitudinal data analysis for epidemiology. A practical guide.
        2nd ed. Cambridge Univ Pr, New York2013
        • Hoekstra T.
        • Barbosa-Leiker C.
        • Koppes L.
        • Twisk J.W.
        Developmental trajectories of body mass index throughout the life course: an application of latent class growth (mixture) modelling.
        Longit Life Course Stud. 2011; 2: 319-330
        • de Groot S.
        • Post M.W.
        • Snoek G.J.
        • Schuitemaker M.
        • van der Woude L.H.
        Longitudinal association between lifestyle and coronary heart disease risk factors among individuals with spinal cord injury.
        Spinal Cord. 2013; 51: 314-318
      1. Statistics Netherlands. [Health, lifestyle, health care; from 1900] [Dutch]. Available at: Accessed August 17, 2013.

        • Hertroijs D.
        • Wijnen C.
        • Leistra E.
        • Visser M.
        • van der Heijden E.
        • Kruizenga H.
        Rehabilitation patients: undernourished and obese?.
        J Rehabil Med. 2012; 44: 696-701
        • Brown C.D.
        • Higgins M.
        • Donato K.A.
        • et al.
        Body mass index and the prevalence of hypertension and dyslipidemia.
        Obes Res. 2000; 8: 605-619
        • Garshick E.
        • Ashba J.
        • Tun C.G.
        • Lieberman S.L.
        • Brown R.
        Assessment of stature in spinal cord injury.
        J Spinal Cord Med. 1997; 20: 36-42
        • Dempster A.P.
        • Laird N.M.
        • Rubin D.B.
        Maximum likelihood from incomplete data via the EM algorithm.
        J R Stat Soc Series B Stat Methodol. 1977; 39: 1-39
        • Muthén B.O.
        • Shedden K.
        Finite mixture modeling with mixture outcomes using the EM algorithm.
        Biometrics. 1999; 55: 463-469