Original article| Volume 94, ISSUE 4, P718-724, April 2013

Effect of Rhythmic Auditory Cueing on Gait in People With Alzheimer Disease

Published:November 15, 2012DOI:



      To determine whether rhythmic music and metronome cues alter spatiotemporal gait measures and gait variability in people with Alzheimer disease (AD).


      A repeated-measures study requiring participants to walk under different cueing conditions.


      University movement laboratory.


      Of the people (N=46) who met study criteria (a diagnosis of probable AD and ability to walk 100m) at routine medical review, 30 (16 men; mean age ± SD, 80±6y; revised Addenbrooke's Cognitive Examination range, 26–79) volunteered to participate.


      Participants walked 4 times over an electronic walkway synchronizing to (1) rhythmic music and (2) a metronome set at individual mean baseline comfortable speed cadence.

      Main Outcome Measures

      Gait spatiotemporal measures and gait variability (coefficient of variation [CV]). Data from individual walks under each condition were combined. A 1-way repeated-measures analysis of variance was used to compare uncued baseline, cued, and retest measures.


      Gait velocity decreased with both music and metronome cues compared with baseline (baseline, 110.5cm/s; music, 103.4cm/s; metronome, 105.4cm/s), primarily because of significant decreases in stride length (baseline, 120.9cm; music, 112.5cm; metronome, 114.8cm) with both cue types. This was coupled with increased stride length variability compared with baseline (baseline CV, 3.4%; music CV, 4.3%; metronome CV, 4.5%) with both cue types. These changes did not persist at (uncued) retest. Temporal variability was unchanged.


      Rhythmic auditory cueing at comfortable speed tempo produced deleterious effects on gait in a single session in this group with AD. The deterioration in spatial gait parameters may result from impaired executive function associated with AD. Further research should investigate whether these instantaneous cue effects are altered with more practice or with learning methods tailored to people with cognitive impairment.


      List of abbreviations:

      ACE-R (revised Addenbrooke's Cognitive Examination), AD (Alzheimer disease), CV (coefficient of variation), GDS (Geriatric Depression Scale), MDC (minimum detectable change), PD (Parkinson's disease), RACs (rhythmic auditory cues)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Archives of Physical Medicine and Rehabilitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Wittwer J.E.
        • Webster K.E.
        • Menz H.B.
        A longitudinal study of measures of walking in people with Alzheimer's disease.
        Gait Posture. 2010; 32: 113-117
        • Nadkarni N.K.
        • Mawji E.
        • McIlroy W.E.
        • Black S.E.
        Spatial and temporal gait parameters in Alzheimer's disease and aging.
        Gait Posture. 2009; 30: 452-454
        • Webster K.E.
        • Merory J.R.
        • Wittwer J.E.
        Gait variability in community dwelling adults with Alzheimer disease.
        Alzheimer Dis Assoc Disord. 2006; 20: 37-40
        • Pettersson A.F.
        • Olsson E.
        • Wahlund L.O.
        Motor function in subjects with mild cognitive impairment and early Alzheimer's disease.
        Dement Geriatr Cogn Disord. 2005; 19: 299-304
        • Nakamura T.
        • Meguro K.
        • Sasaki H.
        Relationship between falls and stride length variability in senile dementia of the Alzheimer type.
        Gerontology. 1996; 42: 108-113
        • Eriksson S.
        • Gustafson Y.
        • Lundin-Olsson L.
        Risk factors for falls in people with and without a diagnose of dementia living in residential care facilities: a prospective study.
        Arch Gerontol Geriatr. 2008; 46: 293-306
        • Morris J.C.
        • Rubin E.H.
        • Morris E.J.
        • Mandel S.A.
        Senile dementia of the Alzheimer's type: an important risk factor for serious falls.
        J Gerontol. 1987; 42: 412-417
        • Baker B.R.
        • Duckworth T.
        • Wilkes E.
        Mental state and other prognostic factors in femoral fractures of the elderly.
        J R Coll Gen Pract. 1978; 28: 557-559
        • Shaw F.E.
        Falls in cognitive impairment and dementia.
        Clin Geriatr Med. 2002; 18: 159-173
        • Lenze E.J.
        • Munin M.C.
        • Dew M.A.
        • et al.
        Adverse effects of depression and cognitive impairment on rehabilitation participation and recovery from hip fracture.
        Int J Geriatr Psychiatry. 2004; 19: 472-478
        • Hebert L.E.
        • Bienias J.L.
        • McCann J.J.
        • Scherr P.A.
        • Wilson R.S.
        • Evans D.A.
        Upper and lower extremity motor performance and functional impairment in Alzheimer's disease.
        Am J Alzheimers Dis Other Demen. 2010; 25: 425-431
        • Smith G.E.
        • O'Brien P.C.
        • Ivnik R.J.
        • Kokmen E.
        • Tangalos E.G.
        Prospective analysis of risk factors for nursing home placement of dementia patients.
        Neurology. 2001; 57: 1467-1473
        • Ferri C.P.
        • Prince M.
        • Brayne C.
        • et al.
        Global prevalence of dementia: a Delphi consensus study.
        Lancet. 2005; 366: 2112-2117
        • Blankevoort C.G.
        • van Heuvelen M.J.
        • Boersma F.
        • Luning H.
        • de Jong J.
        • Scherder E.J.
        Review of effects of physical activity on strength, balance, mobility and ADL performance in elderly subjects with dementia.
        Dement Geriatr Cogn Disord. 2010; 30: 392-402
        • Hauer K.
        • Becker C.
        • Lindemann U.
        • Beyer N.
        Effectiveness of physical training on motor performance and fall prevention in cognitively impaired older persons: a systematic review.
        Am J Phys Med Rehabil. 2006; 85: 847-857
        • Suttanon P.
        • Hill K.
        • Said C.
        • Dodd K.
        Can balance exercise programmes improve balance and related physical performance measures in people with dementia? A systematic review.
        Eur Rev Aging Phys Act. 2010; 7: 13-25
        • Hauer K.
        • Schwenk M.
        • Zieschang T.
        • Essig M.
        • Becker C.
        • Oster P.
        Physical training improves motor performance in people with dementia: a randomized controlled trial.
        J Am Geriatr Soc. 2012; 60: 8-15
        • Rolland Y.
        • Pillard F.
        • Klapouszczak A.
        • et al.
        Exercise program for nursing home residents with Alzheimer's disease: a 1-year randomized, controlled trial.
        J Am Geriatr Soc. 2007; 55: 158-165
        • Yogev-Seligmann G.
        • Hausdorff J.M.
        • Giladi N.
        The role of executive function and attention in gait.
        Mov Disord. 2008; 23: 329-342
        • Beauchet O.
        • Launay C.
        • Fantino B.
        • Annweiler C.
        • Allali G.
        Does memantine improve the gait of individuals with Alzheimer's disease?.
        J Am Geriatr Soc. 2011; 59: 2181-2182
        • Montero-Odasso M.
        • Wells J.
        • Borrie M.
        Can cognitive enhancers reduce the risk of falls in people with dementia? An open-label study with controls.
        J Am Geriatr Soc. 2009; 57: 359-360
        • Schwenk M.
        • Zieschang T.
        • Oster P.
        • Hauer K.
        Dual-task performances can be improved in patients with dementia: a randomized controlled trial.
        Neurology. 2010; 74: 1961-1968
        • Lim I.
        • van Wegen E.
        • de Goede C.
        • et al.
        Effects of external rhythmical cueing on gait in patients with Parkinson's disease: a systematic review.
        Clin Rehabil. 2005; 19: 695-713
        • Wittwer J.E.
        • Webster K.E.
        • Hill K.
        Rhythmic auditory cueing to improve walking in patients with neurological conditions other than Parkinson's disease—what is the evidence?.
        Disabil Rehabil. 2012 Jun 8; ([Epub ahead of print])
        • Baker K.
        • Rochester L.
        • Nieuwboer A.
        The effect of cues on gait variability—reducing the attentional cost of walking in people with Parkinson's disease.
        Parkinsonism Relat Disord. 2008; 14: 314-320
        • Clair A.A.
        • O'Konski M.
        The effect of rhythmic auditory stimulation (RAS) on gait characteristics of cadence, velocity, and stride length in persons with late stage dementia.
        J Music Ther. 2006; 43: 154-163
        • Thaut M.H.
        Rhythm, music, and the brain.
        scientific foundations and clinical applications. Routledge, New York2008
        • Chen J.L.
        • Penhune V.B.
        • Zatorre R.J.
        The role of auditory and premotor cortex in sensorimotor transformations.
        Ann N Y Acad Sci. 2009; 1169: 15-34
        • Thaut M.H.
        • Leins A.K.
        • Rice R.R.
        • et al.
        Rhythmic auditory stimulation improves gait more than NDT/Bobath training in near-ambulatory patients early poststroke: a single-blind, randomized trial.
        Neurorehabil Neural Repair. 2007; 21: 455-459
        • Hausdorff J.M.
        • Lowenthal J.
        • Herman T.
        • Gruendlinger L.
        • Peretz C.
        • Giladi N.
        Rhythmic auditory stimulation modulates gait variability in Parkinson's disease.
        Eur J Neurosci. 2007; 26: 2369-2375
        • Rochester L.
        • Baker K.
        • Hetherington V.
        • et al.
        Evidence for motor learning in Parkinson's disease: acquisition, automaticity and retention of cued gait performance after training with external rhythmical cues.
        Brain Res. 2010; 1319: 103-111
        • McKhann G.M.
        • Knopman D.S.
        • Chertkow H.
        • et al.
        The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging–Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease.
        Alzheimers Dement. 2011; 7: 263-269
        • Wittwer J.E.
        • Webster K.E.
        • Andrews P.T.
        • Menz H.B.
        Test-retest reliability of spatial and temporal gait parameters of people with Alzheimer's disease.
        Gait Posture. 2008; 28: 392-396
      1. Halsall P. Internet history sourcebooks project, 2006. Available at: Accessed July 27, 2009.

        • Sheikh J.I.
        • Yesavage J.A.
        Geriatric Depression Scale (GDS): recent evidence and development of a shorter version.
        Clin Gerontol. 1986; 5: 165-173
        • Mioshi E.
        • Dawson K.
        • Mitchell J.
        • Arnold R.
        • Hodges J.R.
        The Addenbrooke's Cognitive Examination Revised (ACE-R): a brief cognitive test battery for dementia screening.
        Int J Geriatr Psychiatry. 2006; 21: 1078-1085
        • Hollman J.H.
        • McDade E.M.
        • Petersen R.C.
        Normative spatiotemporal gait parameters in older adults.
        Gait Posture. 2011; 34: 111-118
        • Frenkel-Toledo S.
        • Giladi N.
        • Peretz C.
        • Herman T.
        • Gruendlinger L.
        • Hausdorff J.
        Effect of gait speed on gait rhythmicity in Parkinson's disease: variability of stride time and swing time respond differently.
        J Neuroeng Rehabil. 2005; 2: 23-29
        • Wittwer J.E.
        • Webster K.E.
        • Hill K.D.
        Music and metronome cues produce different effects on gait spatiotemporal measures but not gait variability in healthy older adults.
        Gait Posture. 2012 Aug 4; ([Epub ahead of print])
        • Cohen J.
        Statistical power analysis for the behavioral sciences.
        2nd ed. L. Erlbaum Associates, Hillsdale1988
        • Lord S.
        • Howe T.
        • Greenland J.
        • Simpson L.
        • Rochester L.
        Gait variability in older adults: a structured review of testing protocol and clinimetric properties.
        Gait Posture. 2011; 34: 443-450
        • Cubo E.
        • Leurgans S.
        • Goetz C.G.
        Short-term and practice effects of metronome pacing in Parkinson's disease patients with gait freezing while in the “on” state: randomized single blind evaluation.
        Parkinsonism Relat Disord. 2004; 10: 507-510
        • van Halteren-van Tilborg I.
        • Scherder E.
        • Hulstijn W.
        Motor-skill learning in Alzheimer's disease: a review with an eye to the clinical practice.
        Neuropsychol Rev. 2007; 17: 203-212
        • Hausdorff J.M.
        • Yogev G.
        • Springer S.
        • Simon E.S.
        • Giladi N.
        Walking is more like catching than tapping: gait in the elderly as a complex cognitive task.
        Exp Brain Res. 2005; 164: 541-548
        • Sheridan P.L.
        • Hausdorff J.M.
        The role of higher-level cognitive function in gait: executive dysfunction contributes to fall risk in Alzheimer's disease.
        Dement Geriatr Cogn Disord. 2007; 24: 125-137
        • Baudic S.
        • Barba G.D.
        • Thibaudet M.C.
        • Smagghe A.
        • Remy P.
        • Traykov L.
        Executive function deficits in early Alzheimer's disease and their relations with episodic memory.
        Arch Clin Neuropsychol. 2006; 21: 15-21
        • Merory J.R.
        • Wittwer J.E.
        • Rowe C.C.
        • Webster K.E.
        Quantitative gait analysis in patients with dementia with Lewy bodies and Alzheimer's disease.
        Gait Posture. 2007; 26: 414-419
        • Muir S.W.
        • Speechley M.
        • Wells J.
        • Borrie M.
        • Gopaul K.
        • Montero-Odasso M.
        Gait assessment in mild cognitive impairment and Alzheimer's disease: the effect of dual-task challenges across the cognitive spectrum.
        Gait Posture. 2012; 35: 96-100
        • Pettersson A.F.
        • Olsson E.
        • Wahlund L.O.
        Effect of divided attention on gait in subjects with and without cognitive impairment.
        J Geriatr Psychiatry Neurol. 2007; 20: 58-62
        • Sheridan P.L.
        • Solomont J.
        • Kowall N.
        • Hausdorff J.M.
        Influence of executive function on locomotor function: divided attention increases gait variability in Alzheimer's disease.
        J Am Geriatr Soc. 2003; 51: 1633-1637
        • Camicioli R.
        • Bouchard T.
        • Licis L.
        Dual-tasks and walking fast: relationship to extra-pyramidal signs in advanced Alzheimer disease.
        J Neurol Sci. 2006; 248: 205-209
        • Thaut M.H.
        • Miltner R.
        • Lange H.W.
        • Hurt C.P.
        • Hoemberg V.
        Velocity modulation and rhythmic synchronization of gait in Huntington's disease.
        Mov Disord. 1999; 14: 808-819
        • Rochester L.
        • Burn D.J.
        • Woods G.
        • Godwin J.
        • Nieuwboer A.
        Does auditory rhythmical cueing improve gait in people with Parkinson's disease and cognitive impairment? A feasibility study.
        Mov Disord. 2009; 24: 839-845
        • Styns F.
        • van Noorden L.
        • Moelants D.
        • Leman M.
        Walking on music.
        Hum Mov Sci. 2007; 26: 769-785
        • Bloch F.
        • Thibaud M.
        • Dugué B.
        • Brèque C.
        • Rigaud A.-S.
        • Kemoun G.
        Psychotropic drugs and falls in the elderly people: updated literature review and meta-analysis.
        J Aging Health. 2011; 23: 329-346
        • Lemke M.R.
        • Wendorff T.
        • Mieth B.
        • Buhl K.
        • Linnemann M.
        Spatiotemporal gait patterns during over ground locomotion in major depression compared with healthy controls.
        J Psychiatr Res. 2000; 34: 277-283
        • Barak Y.
        • Wagenaar R.C.
        • Holt K.G.
        Gait characteristics of elderly people with a history of falls: a dynamic approach.
        Phys Ther. 2006; 86: 1501-1510