Advertisement

Dynamic Restraint Capacity of the Hamstring Muscles Has Important Functional Implications After Anterior Cruciate Ligament Injury and Anterior Cruciate Ligament Reconstruction

      Abstract

      Bryant AL, Creaby MW, Newton RU, Steele JR. Dynamic restraint capacity of the hamstring muscles has important functional implications after anterior cruciate ligament injury and anterior cruciate ligament reconstruction.

      Objective

      The purpose of this study was to investigate the relation between knee functionality of anterior cruciate ligament deficient (ACLD) and anterior cruciate ligament reconstruction (ACLR) patients and hamstring antagonist torque generated during resisted knee extension.

      Design

      Cross-sectional.

      Setting

      Laboratory based.

      Participants

      Male ACLD subjects (n=10) (18–35y) and 27 matched males who had undergone ACLR (14 patella tendon [PT] grafts and 13 combined semitendinosus/gracilis tendon grafts).

      Interventions

      Not applicable.

      Main Outcome Measures

      Knee functionality was rated (0- to 100-point scale) by using the Cincinnati Knee Rating System. Using electromyography data from the semitendinosus (ST) and biceps femoris muscles, we created a mathematical model to estimate the opposing torque generated by the hamstrings during isokinetic knee extension in 10° intervals from 80° to 10° knee flexion.

      Results

      Pearson product-moment correlations revealed that more functional ACLD subjects generated significantly (P<.05) higher hamstring antagonist torque throughout knee extension. In contrast, more functional PT subjects produced significantly lower hamstring antagonist torque at 80° to 70° knee flexion, whereas no significant associations were found between hamstring antagonist torque and knee functionality for the ST/gracilis tendon subjects.

      Conclusions

      An increased hamstring antagonist torque generated by the more functional ACLD subjects, reflective of increased hamstring contractile force, is thought to represent a protective mechanism to compensate for mechanical instability. The restoration of anterior knee stability through ACLR negates the need for augmented hamstring antagonist torque.

      Key Words

      List of Abbreviations:

      ACL (anterior cruciate ligament), ACLD (anterior cruciate ligament deficient), ACLR (anterior cruciate ligament reconstruction), ANOVA (analysis of variance), ATT (anterior tibial translation), BF (biceps femoris), EMG (electromyography), G (gracilis), iEMG (integrated electromyography), PCSA (physiologic cross-sectional area), PT (patella tendon), ROM (range of motion), SM (semimembranosus), ST (semitendinosus)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Archives of Physical Medicine and Rehabilitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Baratta R.
        • Solomonow M.
        • Zhou B.H.
        • Letson D.
        • Chuinard R.
        • D'Ambrosia R.
        Muscular coactivation: the role of the antagonist in maintaining knee stability.
        Am J Sports Med. 1988; 16: 113-122
        • Solomonow M.
        • Krogsgaard M.
        Sensorimotor control of knee stability.
        Scand J Med Sci Sports. 2001; 11: 64-80
        • Aagaard P.
        • Simonsen E.B.
        • Andersen J.L.
        • Magnusson S.P.
        • Bojsen-Moller F.
        • Dyhre-Poulsen P.
        Antagonist muscle coactivation during isokinetic knee extension.
        Scand J Med Sci Sports. 2000; 10: 58-67
        • Kellis E.
        • Baltzopoulos V.
        The effects of antagonist moment on the resultant knee joint moment during isokinetic testing of the knee extensors.
        Eur J Appl Physiol Occup Physiol. 1997; 76: 253-259
        • Hagood S.
        • Solomonow M.
        • Baratta R.
        • Zhou B.H.
        • D'Ambrosia R.
        The effect of joint velocity on the contribution of the antagonist musculature to knee stiffness and laxity.
        Am J Sports Med. 1990; 18: 182-187
        • More R.C.
        • Karras B.T.
        • Neiman R.
        • Fritschy D.
        • Woo S.
        • Daniel D.M.
        Hamstrings—an anterior cruciate ligament protagonist.
        Am J Sports Med. 1993; 21: 231-237
        • Pandy M.G.
        • Shelburne K.B.
        Dependence of cruciate-ligament loading on muscle forces and external load.
        J Biomech. 1997; 30: 1015-1024
        • Mattacola C.G.
        • Perrin D.H.
        • Gansneder B.M.
        • Gieck J.H.
        • Saliba E.N.
        • McCue 3rd, F.C.
        Strength, functional outcome, and postural stability after anterior cruciate ligament reconstruction.
        J Athl Train. 2002; 37: 262-268
        • Hiemstra L.A.
        • Webber S.
        • MacDonald P.B.
        • Kriellaars D.J.
        Knee strength deficits after hamstring tendon and patellar tendon anterior cruciate ligament reconstruction.
        Med Sci Sports Exerc. 2000; 32: 1472-1479
        • Beynnon B.D.
        • Johnson R.J.
        • Fleming B.C.
        • et al.
        Anterior cruciate ligament replacement: comparison of bone-patellar tendon-bone grafts with two-strand hamstring grafts.
        J Bone Joint Surg Am. 2002; 84-A: 1503-1513
        • Hewett T.E.
        Neuromuscular and hormonal factors associated with knee injuries in female athletes: strategies for intervention.
        Sports Med. 2000; 29: 313-327
        • Romani W.
        • Curl L.A.
        • Lovering R.
        The effect of endogenous estradiol levels at three phases of the menstrual cycle on anterior cruciate ligament stiffness in active females.
        J Athl Train. 2001; 2: S62
        • Romani W.
        • Patrie J.
        • Curl L.A.
        • Flaws J.A.
        The correlations between estradiol, estrone, estriol, progesterone, and sex hormone-binding globulin and anterior cruciate ligament stiffness in healthy, active females.
        J Womens Health (Larchmt). 2003; 12: 287-298
        • Shultz S.J.
        • Kirk S.E.
        • Johnson M.L.
        • Sander T.C.
        • Perrin D.H.
        Relationship between sex hormones and anterior knee laxity across the menstrual cycle.
        Med Sci Sports Exerc. 2004; 36: 1165-1174
        • Eiling E.
        • Bryant A.L.
        • Petersen W.
        • Murphy A.
        • Hohmann E.
        Effects of menstrual-cycle hormone fluctuations on musculotendinous stiffness and knee joint laxity.
        Knee Surg Sports Traumatol Arthrosc. 2007; 15: 126-132
        • Gauffin H.
        • Pettersson G.
        • Tropp H.
        Kinematic analysis of one-legged long hopping in patients with an old rupture of the anterior cruciate ligament.
        Clin Biomech (Bristol, Avon). 1990; 5: 41-46
        • Gauffin H.
        • Tropp H.
        Altered movement and muscular-activation patterns during the one-legged jump in patients with an old anterior cruciate ligament rupture.
        Am J Sports Med. 1992; 20: 182-192
        • Chmielewski T.L.
        • Hurd W.J.
        • Snyder-Mackler L.
        Elucidation of a potentially destabilizing control strategy in ACL deficient non-copers.
        J Electromyogr Kinesiol. 2005; 15: 83-92
        • Buss D.D.
        • Warren R.F.
        • Wickiewicz T.L.
        • Galinat B.J.
        • Panariello R.
        Arthroscopically assisted reconstruction of the anterior cruciate ligament with use of autogenous patellar-ligament grafts.
        J Bone Joint Surg. 1993; 75: 1346-1355
        • Barber-Westin S.D.
        • Noyes F.R.
        • Andrews M.
        A rigorous comparison between the sexes of results and complications after anterior cruciate ligament reconstruction.
        Am J Sports Med. 1997; 25: 514-526
        • Brown C.H.
        • Steiner M.E.
        • Carson E.W.
        The use of hamstring tendons for anterior cruciate ligament reconstruction.
        Clin Sports Med. 1993; 12: 723-756
        • Shelbourne K.D.
        • Nitz P.
        Accelerated rehabilitation after anterior cruciate ligament reconstruction.
        Am J Sports Med. 1990; 18: 292-299
        • Corry I.S.
        • Webb J.M.
        • Clingeleffer A.J.
        • Pinczewski L.A.
        Arthroscopic reconstruction of the anterior cruciate ligament.
        Am J Sports Med. 1999; 27: 444-454
        • MacDonald P.B.
        • Hedden D.
        • Pacin O.
        • Huebert D.
        Effects of an accelerated rehabilitation program after anterior cruciate ligament reconstruction with combined semitendinosus-gracilis autograft and a ligament augmentation device.
        Am J Sports Med. 1995; 23: 588-592
        • Noyes F.R.
        The Noyes knee rating system.
        Cincinnati Sportsmedicine and Education Foundation, Cincinnati1995
        • Daanen H.A.
        • Mazure M.
        • Holewijn M.
        • Van der Velde E.A.
        Reproducibility of the mean power frequency of the surface electromyogram.
        Eur J Appl Physiol Occup Physiol. 1990; 61: 274-277
        • De Luca C.J.
        Control properties of motor units.
        J Exp Biol. 1985; 115: 125-136
        • Kannus P.
        Isokinetic evaluation of muscular performance: Implications for muscle testing and rehabilitation.
        Int J Sports Med. 1994; 15 (S11-S8)
        • Tegner Y.
        • Lysholm J.
        • Lysholm M.
        • Gillquist J.
        A performance test to monitor rehabilitation and evaluate anterior cruciate ligament injuries.
        Am J Sports Med. 1986; 14: 156-159
        • Wiklander J.
        • Lysholm J.
        Simple tests for surveying muscle strength and muscle stiffness in sportsmen.
        Int J Sports Med. 1987; 8: 50-54
        • Wilk K.E.
        • Romaniello W.T.
        • Soscia S.M.
        • Arrigo C.A.
        • Andrews J.R.
        The relationship between subjective knee scores, isokinetic testing, and functional testing in the ACL-reconstructed knee.
        J Orthop Sports Phys Ther. 1994; 20: 60-73
        • Noyes F.R.
        • Barber S.B.
        • Mooar L.A.
        A rationale for assessing sports activity levels and limitations in knee disorders.
        Clin Orthop Relat Res. 1989; 246: 238-249
        • McNair P.J.
        • Wood G.A.
        • Marshall R.N.
        Stiffness of the hamstring muscles and its relationship to function in anterior cruciate deficient individuals.
        Clin Biomech (Bristol, Avon). 1992; 7: 131-173
        • Bryant A.L.
        • Kelly J.
        • Hohmann E.
        Neuromuscular adaptations and correlates of knee functionality following ACL reconstruction.
        J Orthop Res. 2008; 26: 126-135
        • Winter D.A.
        Biomechanics and motor control of human movement.
        2nd ed. Wiley-Interscience, New York1990
        • Steele J.R.
        • Brown J.M.
        Effects of chronic anterior cruciate ligament deficiency on muscle activation patterns during an abrupt deceleration task.
        Clin Biomech (Bristol, Avon). 1999; 14: 247-257
        • Kellis E.
        • Baltzopoulos V.
        The effects of normalization method on antagonistic activity patterns during eccentric and concentric isokinetic knee extension and flexion.
        J Electromyogr Kinesiol. 1996; 6: 235-245
        • Wickiewicz T.L.
        • Roy R.R.
        • Powell P.L.
        • Edgerton R.V.
        Muscle architecture of the human lower limb.
        Clin Orthop Relat Res. 1983; 179: 275-283
        • Kellis E.
        • Baltzopoulos V.
        In vivo determination of the patella tendon and hamstrings moment arms in adult males using videofluoroscopy during submaximal knee extension and flexion.
        Clin Biomech (Bristol, Avon). 1999; 14: 118-124
        • Smidt G.L.
        Biomechanical analysis of knee flexion and extension.
        J Biomech. 1973; 6: 79-92
        • Li R.C.
        • Maffulli N.
        • Hsu Y.C.
        • Chan K.M.
        Isokinetic strength of the quadriceps and hamstrings and functional ability of anterior cruciate deficient knees in recreational athletes.
        Br J Sports Med. 1996; 30: 161-164
        • McNair P.J.
        Neuromuscular adaptations associated with anterior cruciate ligament deficiency [dissertation].
        University of Western Australia, Perth1991
        • Tibone J.E.
        • Antich T.J.
        A biomechanical analysis of anterior cruciate ligament reconstruction with patellar tendon: A two year followup.
        Am J Sports Med. 1988; 16: 332-335
        • Aune A.K.
        • Holm I.
        • Risberg M.A.
        • Jensen H.K.
        • Steen H.
        Four-strand hamstring tendon autograft compared with patellar tendon-bone autograft for anterior cruciate ligament reconstruction.
        Am J Sports Med. 2001; 29: 722-728
        • Feller J.A.
        • Webster K.E.
        A randomized comparison of patellar tendon and hamstring tendon anterior cruciate ligament reconstruction.
        Am J Sports Med. 2003; 31: 564-573
        • Shelburne K.B.
        Modeling the mechanics of the normal and reconstructed knee joint [dissertation].
        University of Texas, Austin1997
        • Stener B.
        Experimental evaluation of the hypothesis of ligament-muscular protective reflexes I.
        Acta Physiol Scand. 1959; 48: 5-26
        • Aagaard P.
        • Simonsen E.B.
        • Dyhre-Poulsen P.
        A noninvasive method for measuring antagonist co-contraction force during isokinetic knee extension and flexion.
        Scand J Med Sci Sports. 1994; 4: 286
        • Swanik C.B.
        • Lephart S.M.
        • Swanik K.A.
        • Stone D.A.
        • Fu F.H.
        Neuromuscular dynamic restraint in women with anterior cruciate ligament injuries.
        Clin Orthop Relat Res. 2004; 425: 189-199
        • Pandy M.G.
        • Shelburne K.B.
        Theoretical analysis of ligament and extensor-mechanism function in the ACL-deficient knee.
        Clin Biomech (Bristol, Avon). 1998; 13: 98-111
        • McNair P.J.
        • Marshall R.N.
        • Matheson J.A.
        Disability and strength of athletes with anterior cruciate ligament deficiency.
        N Z J Sports Med. 1990; 14: 537-539
        • Granata K.P.
        • Padua D.A.
        • Wilson S.E.
        Gender differences in active musculoskeletal stiffness.
        J Electromyogr Kinesiol. 2002; 12: 127-135
        • McNair P.J.
        • Marshall R.N.
        Landing characteristics in subjects with normal and anterior cruciate ligament deficient knee joints.
        Arch Phys Med Rehabil. 1994; 75: 584-589
        • McNitt-Gray J.L.
        Kinematics and impulse characteristics of drop landings from three heights.
        Int J Sport Biomech. 1991; 7: 201-224
        • Hirokawa S.
        • Soiomonow M.
        • Luo Z.
        • Lu Y.
        • D-Ambrosia R.
        Muscular co-contraction and control of knee stability.
        J Electromyogr Kinesiol. 1991; 1: 199-208
        • Draganich L.F.
        • Vahey J.W.
        An in vitro study of anterior cruciate ligament strain induced by quadriceps and hamstrings forces.
        J Orthop Res. 1990; 8: 57-63
        • Renstrom P.
        • Arms S.W.
        • Stanwyck T.S.
        • Johnson R.J.
        • Pope M.H.
        Strain within the anterior cruciate ligament during hamstring and quadriceps activity.
        Am J Sports Med. 1986; 14: 83-87
        • Lephart S.M.
        • Perrin O.H.
        • Fu F.H.
        • Minger K.
        Functional performance tests for the anterior cruciate ligament insufficient athlete.
        J Athl Train. 1991; 26: 44-50
        • Harter R.A.
        • Osternig L.R.
        • Standifer L.W.
        Isokinetic evaluation of quadriceps and hamstring symmetry following anterior cruciate ligament reconstruction.
        Arch Phys Med Rehabil. 1990; 71: 465-468
        • Ferretti A.
        • Conteduca F.
        • Morelli F.
        • Masi V.
        Regeneration of the semitendinosus tendon after its use in anterior cruciate ligament reconstruction: a histologic study of three cases.
        Am J Sports Med. 2002; 30: 204-207
        • Cross M.J.
        • Roger G.
        • Kujawa P.
        • Anderson I.F.
        Regeneration of the semitendinosus and gracilis tendons following their transection for repair of the anterior cruciate ligament.
        Am J Sports Med. 1992; 20: 221-223
        • Kleiner J.B.
        • Amiel D.
        • Roux R.D.
        • Akeson W.H.
        Origin of replacement cells for the anterior cruciate ligament autograft.
        J Orthop Res. 1986; 4: 466-474
        • Johnson L.L.
        The outcome of a free autogenous semitendinosus tendon graft in human anterior cruciate reconstructive surgery: a histological study.
        Arthroscopy. 1993; 9: 131-142
        • Cowling E.J.
        • Steele J.R.
        Is lower limb muscle synchrony during landing affected by gender?.
        J Electromyogr Kinesiol. 2001; 11: 263-268