Advertisement
Special communication| Volume 87, ISSUE 12, SUPPLEMENT , 84-93, December 2006

Download started.

Ok

Noninvasive Cortical Stimulation in Neurorehabilitation: A Review

      Abstract

      Harris-Love ML, Cohen LG. Noninvasive cortical stimulation in neurorehabilitation: a review.
      The purpose of this special communication is to provide an overview of noninvasive cortical stimulation techniques, the types of mechanistic information they can provide, and the ways their use is contributing to our understanding of current models of neurorehabilitation. The focus is primarily on studies using noninvasive cortical stimulation techniques in the human motor system. Noninvasive cortical stimulation techniques are useful tools in the field of neurorehabilitation that are being actively used to test proposed models of functional recovery after neurologic injury. They can provide insight into the physiologic mechanisms of functional recovery and are under investigation as a possible auxiliary intervention to modulate cortical excitability and enhance training effects.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Archives of Physical Medicine and Rehabilitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gandiga P.C.
        • Hummel F.C.
        • Cohen L.G.
        Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation.
        Clin Neurophysiol. 2006; 117: 845-850
        • Roth B.J.
        • Saypol J.M.
        • Hallett M.
        • Cohen L.G.
        A theoretical calculation of the electric field induced in the cortex during magnetic stimulation.
        Electroencephalogr Clin Neurophysiol. 1991; 81: 47-56
        • Day B.L.
        • Dressler D.
        • Maertens de Noordhout A.
        • et al.
        Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses.
        J Physiol. 1989; 412 ([published erratum in: J Physiol (Lond) 1990;430:617]): 449-473
        • Cohen L.G.
        • Roth B.J.
        • Wassermann E.M.
        • et al.
        Magnetic stimulation of the human cerebral cortex, an indicator of reorganization in motor pathways in certain pathological conditions.
        J Clin Neurophysiol. 1991; 8: 56-65
        • Chen R.
        • Lozano A.M.
        • Ashby P.
        Mechanism of the silent period following transcranial magnetic stimulation.
        Exp Brain Res. 1999; 128: 539-542
        • Chen R.
        • Yung D.
        • Li J.Y.
        Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex.
        J Neurophysiol. 2003; 89: 1256-1264
        • Garvey M.A.
        • Ziemann U.
        • Becker D.A.
        • Barker C.A.
        • Bartko J.J.
        New graphical method to measure silent periods evoked by transcranial magnetic stimulation.
        Clin Neurophysiol. 2001; 112: 1451-1460
        • Boroojerdi B.
        • Hungs M.
        • Mull M.
        • Topper R.
        • Noth J.
        Interhemispheric inhibition in patients with multiple sclerosis.
        Electroencephalogr Clin Neurophysiol. 1998; 109: 230-237
        • Meyer B.U.
        • Roricht S.
        • Schmierer K.
        • et al.
        First diagnostic applications of transcallosal inhibition in diseases affecting callosal neurones (multiple sclerosis, hydrocephalus, Huntington’s disease).
        Electroencephalogr Clin Neurophysiol Suppl. 1999; 51: 233-242
        • Schmierer K.
        • Irlbacher K.
        • Grosse P.
        • Roricht S.
        • Meyer B.U.
        Correlates of disability in multiple sclerosis detected by transcranial magnetic stimulation.
        Neurology. 2002; 59: 1218-1224
        • Bajbouj M.
        • Gallinat J.
        • Niehaus L.
        • Lang U.E.
        • Roricht S.
        • Meyer B.U.
        Abnormalities of inhibitory neuronal mechanisms in the motor cortex of patients with schizophrenia.
        Pharmacopsychiatry. 2004; 37: 74-80
        • Boroojerdi B.
        • Topper R.
        • Foltys H.
        • Meincke U.
        Transcallosal inhibition and motor conduction studies in patients with schizophrenia using transcranial magnetic stimulation.
        Br J Psychiatry. 1999; 175: 375-379
        • Niehaus L.
        • von Alt-Stutterheim K.
        • Roricht S.
        • Meyer B.U.
        Abnormal postexcitatory and interhemispheric motor cortex inhibition in writer’s cramp.
        J Neurol. 2001; 248: 51-56
        • Wolters A.
        • Classen J.
        • Kunesch E.
        • Grossmann A.
        • Benecke R.
        Measurements of transcallosally mediated cortical inhibition for differentiating parkinsonian syndromes.
        Mov Disord. 2004; 19: 518-528
        • Garvey M.A.
        • Barker C.A.
        • Bartko J.J.
        • et al.
        The ipsilateral silent period in boys with attention-deficit/hyperactivity disorder.
        Clin Neurophysiol. 2005; 116: 1889-1896
        • Day B.L.
        • Rothwell J.C.
        • Thompson P.D.
        • et al.
        Delay in the execution of voluntary movement by electrical or magnetic brain stimulation in intact man.
        Brain. 1989; 112: 649-663
        • Amassian V.E.
        • Cracco R.Q.
        • Maccabee P.J.
        • Cracco J.B.
        • Rudell A.
        • Eberle L.
        Suppression of visual perception by magnetic coil stimulation of human occipital cortex.
        Electroencephalogr Clin Neurophysiol. 1989; 74: 458-462
        • Walsh V.
        • Rushworth M.
        A primer of magnetic stimulation as a tool for neuropsychology.
        Neuropsychologia. 1999; 37: 125-135
        • Kujirai T.
        • Caramia M.D.
        • Rothwell J.C.
        • et al.
        Corticocortical inhibition in human motor cortex.
        J Physiol. 1993; 471: 501-519
        • Ferbert A.
        • Priori A.
        • Rothwell J.C.
        • Day B.L.
        • Colebatch J.G.
        • Marsden C.D.
        Interhemispheric inhibition of the human motor cortex.
        J Physiol. 1992; 453: 525-546
        • Baumer T.
        • Bock F.
        • Koch G.
        • et al.
        Magnetic stimulation of human premotor or motor cortex produces interhemispheric facilitation through distinct pathways.
        J Physiol. 2006; 572: 857-868
        • Hanajima R.
        • Ugawa Y.
        • Machii K.
        • et al.
        Interhemispheric facilitation of the hand motor area in humans.
        J Physiol. 2001; 531: 849-859
        • Ugawa Y.
        • Hanajima R.
        • Kanazawa I.
        Interhemispheric facilitation of the hand area of the human motor cortex.
        Neurosci Lett. 1993; 160: 153-155
        • Claus D.
        • Weis M.
        • Jahnke U.
        • Plewe A.
        • Brunholzl C.
        Corticospinal conduction studied with magnetic double stimulation in the intact human.
        J Neurol Sci. 1992; 111: 180-188
        • Nakamura H.
        • Kitagawa H.
        • Kawaguchi Y.
        • Tsuji H.
        Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans.
        J Physiol. 1997; 498: 817-823
        • Nakamura H.
        • Kitagawa H.
        • Kawaguchi Y.
        • Tsuji H.
        • Takano H.
        • Nakatoh S.
        Intracortical facilitation and inhibition after paired magnetic stimulation in humans under anesthesia.
        Neurosci Lett. 1995; 199: 155-157
        • Sanger T.D.
        • Garg R.R.
        • Chen R.
        Interactions between two different inhibitory systems in the human motor cortex.
        J Physiol. 2001; 530: 307-317
        • Werhahn K.J.
        • Kunesch E.
        • Noachtar S.
        • Benecke R.
        • Classen J.
        Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans.
        J Physiol. 1999; 517: 591-597
        • Ziemann U.
        • Lonnecker S.
        • Paulus W.
        Inhibition of human motor cortex by ethanol.
        Brain. 1995; 118: 1437-1446
        • Liepert J.
        • Schwenkreis P.
        • Tegenthoff M.
        • Malin J.P.
        The glutamate antagonist riluzole suppresses intracortical facilitation.
        J Neural Transm. 1997; 104: 1207-1214
        • Schwenkreis P.
        • Liepert J.
        • Witscher K.
        • et al.
        Riluzole suppresses motor cortex facilitation in correlation to its plasma level.
        Exp Brain Res. 2000; 135: 293-299
        • Daskalakis Z.J.
        • Christensen B.K.
        • Chen R.
        • Fitzgerald P.B.
        • Zipursky R.B.
        • Kapur S.
        Evidence for impaired cortical inhibition in schizophrenia using transcranial magnetic stimulation.
        Arch Gen Psychiatry. 2002; 59: 347-354
        • Hanajima R.
        • Ugawa Y.
        • Okabe S.
        • et al.
        Interhemispheric interaction between the hand motor areas in patients with cortical myoclonus.
        Clin Neurophysiol. 2001; 112: 623-626
        • Daskalakis Z.J.
        • Christensen B.K.
        • Fitzgerald P.B.
        • Roshan L.
        • Chen R.
        The mechanisms of interhemispheric inhibition in the human motor cortex.
        J Physiol. 2002; 543: 317-326
        • Duque J.
        • Hummel F.
        • Celnik P.
        • Murase N.
        • Mazzocchio R.
        • Cohen L.G.
        Transcallosal inhibition in chronic subcortical stroke.
        Neuroimage. 2005; 28: 940-946
        • Duque J.
        • Mazzocchio R.
        • Dambrosia J.
        • Murase N.
        • Olivier E.
        • Cohen L.G.
        Kinematically specific interhemispheric inhibition operating in the process of generation of a voluntary movement.
        Cereb Cortex. 2005; 15: 588-593
        • Murase N.
        • Duque J.
        • Mazzocchio R.
        • Cohen L.G.
        Influence of interhemispheric interactions on motor function in chronic subcortical stroke.
        Ann Neurol. 2004; 55: 400-409
        • Pascual-Leone A.
        • Tormos J.M.
        • Keenan J.
        • Tarazona F.
        • Canete C.
        • Catala M.D.
        Study and modulation of human cortical excitability with transcranial magnetic stimulation.
        J Clin Neurophysiol. 1998; 15: 333-343
        • Chen R.
        • Classen J.
        • Gerloff C.
        • et al.
        Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation.
        Neurology. 1997; 48: 1398-1403
        • Muellbacher W.
        • Ziemann U.
        • Boroojerdi B.
        • Hallett M.
        Effects of low-frequency transcranial magnetic stimulation on motor excitability and basic motor behavior.
        Clin Neurophysiol. 2000; 111: 1002-1007
        • Pascual-Leone A.
        • Valls-Sole J.
        • Wassermann E.M.
        • Hallett M.
        Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex.
        Brain. 1994; 117: 847-858
        • Evers S.
        • Bockermann I.
        • Nyhuis P.W.
        The impact of transcranial magnetic stimulation on cognitive processing: an event-related potential study.
        Neuroreport 17. 2001; 12: 2915-2918
        • Hadland K.A.
        • Rushworth M.F.
        • Passingham R.E.
        • Jahanshahi M.
        • Rothwell J.C.
        Interference with performance of a response selection task that has no working memory component: an rTMS comparison of the dorsolateral prefrontal and medial frontal cortex.
        J Cogn Neurosci. 2001; 13: 1097-1108
        • Amedi A.
        • Floel A.
        • Knecht S.
        • Zohary E.
        • Cohen L.G.
        Transcranial magnetic stimulation of the occipital pole interferes with verbal processing in blind subjects.
        Nat Neurosci. 2004; 7: 1266-1270
        • Cohen L.G.
        • Celnik P.
        • Pascual-Leone A.
        • et al.
        Functional relevance of cross-modal plasticity in blind humans.
        Nature. 1997; 389: 180-183
        • MacDonald P.A.
        • Paus T.
        The role of parietal cortex in awareness of self-generated movements: a transcranial magnetic stimulation study.
        Cereb Cortex. 2003; 13: 962-967
        • Pal P.K.
        • Hanajima R.
        • Gunraj C.A.
        • et al.
        Effect of low-frequency repetitive transcranial magnetic stimulation on interhemispheric inhibition.
        J Neurophysiol. 2005; 94: 1668-1675
        • Butefisch C.M.
        • Khurana V.
        • Kopylev L.
        • Cohen L.G.
        Enhancing encoding of a motor memory in the primary motor cortex by cortical stimulation.
        J Neurophysiol. 2004; 91: 2110-2116
        • Padberg F.
        • Zwanzger P.
        • Keck M.E.
        • et al.
        Repetitive transcranial magnetic stimulation (rTMS) in major depression: relation between efficacy and stimulation intensity.
        Neuropsychopharmacology. 2002; 27: 638-645
        • Lefaucheur J.P.
        • Drouot X.
        • Von Raison F.
        • Menard-Lefaucheur I.
        • Cesaro P.
        • Nguyen J.P.
        Improvement of motor performance and modulation of cortical excitability by repetitive transcranial magnetic stimulation of the motor cortex in Parkinson’s disease.
        Clin Neurophysiol. 2004; 115: 2530-2541
        • Siebner H.R.
        • Tormos J.M.
        • Ceballos-Baumann A.O.
        • et al.
        Low-frequency repetitive transcranial magnetic stimulation of the motor cortex in writer’s cramp.
        Neurology. 1999; 52: 529-537
        • Khedr E.M.
        • Ahmed M.A.
        • Fathy N.
        • Rothwell J.C.
        Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke.
        Neurology. 2005; 65: 466-468
        • Mansur C.G.
        • Fregni F.
        • Boggio P.S.
        • et al.
        A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients.
        Neurology. 2005; 64: 1802-1804
        • Kobayashi M.
        • Hutchinson S.
        • Theoret H.
        • Schlaug G.
        • Pascual-Leone A.
        Repetitive TMS of the motor cortex improves ipsilateral sequential simple finger movements.
        Neurology. 2004; 62: 91-98
        • Hess G.
        • Aizenman C.D.
        • Donoghue J.P.
        Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex.
        J Neurophysiol. 1996; 75: 1765-1778
        • Larson J.
        • Wong D.
        • Lynch G.
        Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation.
        Brain Res. 1986; 368: 347-350
        • Hess G.
        • Donoghue J.P.
        Long-term depression of horizontal connections in rat motor cortex.
        Eur J Neurosci. 1996; 8: 658-665
        • Huang Y.Z.
        • Edwards M.J.
        • Rounis E.
        • Bhatia K.P.
        • Rothwell J.C.
        Theta burst stimulation of the human motor cortex.
        Neuron. 2005; 45: 201-206
        • Nitsche M.A.
        • Niehaus L.
        • Hoffmann K.T.
        • et al.
        MRI study of human brain exposed to weak direct current stimulation of the frontal cortex.
        Clin Neurophysiol. 2004; 115: 2419-2423
        • Nitsche M.A.
        • Nitsche M.S.
        • Klein C.C.
        • Tergau F.
        • Rothwell J.C.
        • Paulus W.
        Level of action of cathodal DC polarisation induced inhibition of the human motor cortex.
        Clin Neurophysiol. 2003; 114: 600-604
        • Elbert T.
        • Lutzenberger W.
        • Rockstroh B.
        • Birbaumer N.
        The influence of low-level transcortical DC-currents on response speed in humans.
        Int J Neurosci. 1981; 14: 101-114
        • Fregni F.
        • Boggio P.S.
        • Nitsche M.
        • et al.
        Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory.
        Exp Brain Res. 2005; 166: 23-30
        • Kincses T.Z.
        • Antal A.
        • Nitsche M.A.
        • Bartfai O.
        • Paulus W.
        Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human.
        Neuropsychologia. 2004; 42: 113-117
        • Marshall L.
        • Molle M.
        • Hallschmid M.
        • Born J.
        Transcranial direct current stimulation during sleep improves declarative memory.
        J Neurosci. 2004; 24: 9985-9992
        • Nitsche M.A.
        • Paulus W.
        Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation.
        J Physiol. 2000; 527: 633-639
        • Nitsche M.A.
        • Paulus W.
        Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans.
        Neurology. 2001; 57: 1899-1901
        • Liebetanz D.
        • Nitsche M.A.
        • Tergau F.
        • Paulus W.
        Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability.
        Brain. 2002; 125: 2238-2247
        • Nitsche M.A.
        • Fricke K.
        • Henschke U.
        • et al.
        Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans.
        J Physiol. 2003; 553: 293-301
        • Nitsche M.A.
        • Seeber A.
        • Frommann K.
        • et al.
        Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex.
        J Physiol. 2005; 568: 291-303
        • Hummel F.C.
        • Cohen L.G.
        Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke?.
        Lancet Neurol. 2006; 5: 708-712
        • Quartarone A.
        • Morgante F.
        • Bagnato S.
        • et al.
        Long lasting effects of transcranial direct current stimulation on motor imagery.
        Neuroreport. 2004; 15: 1287-1291
        • Rosenkranz K.
        • Nitsche M.A.
        • Tergau F.
        • Paulus W.
        Diminution of training-induced transient motor cortex plasticity by weak transcranial direct current stimulation in the human.
        Neurosci Lett. 2000; 296: 61-63
        • Nitsche M.A.
        • Schauenburg A.
        • Lang N.
        • et al.
        Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human.
        J Cogn Neurosci. 2003; 15: 619-626
        • Antal A.
        • Nitsche M.A.
        • Kincses T.Z.
        • Kruse W.
        • Hoffmann K.P.
        • Paulus W.
        Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans.
        Eur J Neurosci May. 2004; 19: 2888-2892
        • Antal A.
        • Nitsche M.A.
        • Kruse W.
        • Kincses T.Z.
        • Hoffmann K.P.
        • Paulus W.
        Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans.
        J Cogn Neurosci. 2004; 16: 521-527
        • Uy J.
        • Ridding M.C.
        Increased cortical excitability induced by transcranial DC and peripheral nerve stimulation.
        J Neurosci Methods. 2003; 127: 193-197
        • Lang N.
        • Siebner H.R.
        • Ernst D.
        • et al.
        Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects.
        Biol Psychiatry. 2004; 56: 634-639
        • Siebner H.R.
        • Lang N.
        • Rizzo V.
        • et al.
        Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex.
        J Neurosci. 2004; 24: 3379-3385
        • Hummel F.
        • Celnik P.
        • Giraux P.
        • et al.
        Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke.
        Brain. 2005; 128: 490-499
        • Hummel F.
        • Cohen L.G.
        Improvement of motor function with noninvasive cortical stimulation in a patient with chronic stroke.
        Neurorehabil Neural Repair. 2005; 19: 14-19
        • Plewnia C.
        • Lotze M.
        • Gerloff C.
        Disinhibition of the contralateral motor cortex by low-frequency rTMS.
        Neuroreport. 2003; 14: 609-612
        • Michael N.
        • Gosling M.
        • Reutemann M.
        • et al.
        Metabolic changes after repetitive transcranial magnetic stimulation (rTMS) of the left prefrontal cortex: a sham-controlled proton magnetic resonance spectroscopy (1H MRS) study of healthy brain.
        Eur J Neurosci. 2003; 17: 2462-2468
        • Bestmann S.
        • Baudewig J.
        • Siebner H.R.
        • Rothwell J.C.
        • Frahm J.
        Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits.
        Eur J Neurosci. 2004; 19: 1950-1962
        • Lang N.
        • Siebner H.R.
        • Ward N.S.
        • et al.
        How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain?.
        Eur J Neurosci. 2005; 22: 495-504
        • Strens L.H.
        • Fogelson N.
        • Shanahan P.
        • Rothwell J.C.
        • Brown P.
        The ipsilateral human motor cortex can functionally compensate for acute contralateral motor cortex dysfunction.
        Curr Biol. 2003; 13: 1201-1205
        • Sack A.T.
        • Camprodon J.A.
        • Pascual-Leone A.
        • Goebel R.
        The dynamics of interhemispheric compensatory processes in mental imagery.
        Science. 2005; 308: 702-704
        • Glover S.
        • Miall R.C.
        • Rushworth M.F.
        Parietal rTMS disrupts the initiation but not the execution of on-line adjustments to a perturbation of object size.
        J Cogn Neurosci. 2005; 17: 124-136
        • Werhahn K.J.
        • Conforto A.B.
        • Kadom N.
        • Hallett M.
        • Cohen L.G.
        Contribution of the ipsilateral motor cortex to recovery after chronic stroke.
        Ann Neurol. 2003; 54: 464-472
        • Ganis G.
        • Keenan J.P.
        • Kosslyn S.M.
        • Pascual-Leone A.
        Transcranial magnetic stimulation of primary motor cortex affects mental rotation.
        Cereb Cortex. 2000; 10: 175-180
        • Mull B.R.
        • Seyal M.
        Transcranial magnetic stimulation of left prefrontal cortex impairs working memory.
        Clin Neurophysiol. 2001; 112: 1672-1675
        • Fregni F.
        • Boggio P.S.
        • Mansur C.G.
        • et al.
        Transcranial direct current stimulation of the unaffected hemisphere in stroke patients.
        Neuroreport. 2005; 16: 1551-1555
        • Turner M.R.
        • Osei-Lah A.D.
        • Hammers A.
        • et al.
        Abnormal cortical excitability in sporadic but not homozygous D90A SOD1 ALS.
        J Neurol Neurosurg Psychiatry. 2005; 76: 1279-1285
        • Hamer H.M.
        • Reis J.
        • Mueller H.H.
        • et al.
        Motor cortex excitability in focal epilepsies not including the primary motor area—a TMS study.
        Brain. 2005; 128: 811-818
        • Pierantozzi M.
        • Panella M.
        • Palmieri M.G.
        • et al.
        Different TMS patterns of intracortical inhibition in early onset Alzheimer dementia and frontotemporal dementia.
        Clin Neurophysiol. 2004; 115: 2410-2418
        • Brighina F.
        • Scalia S.
        • Gennuso M.
        • et al.
        Hypo-excitability of cortical areas in patients affected by Friedreich ataxia: a TMS study.
        J Neurol Sci. 2005; 235: 19-22
        • Aurora S.K.
        • Barrodale P.
        • Chronicle E.P.
        • Mulleners W.M.
        Cortical inhibition is reduced in chronic and episodic migraine and demonstrates a spectrum of illness.
        Headache. 2005; 45: 546-552
        • Attarian S.
        • Azulay J.P.
        • Lardillier D.
        • Verschueren A.
        • Pouget J.
        Transcranial magnetic stimulation in lower motor neuron diseases.
        Clin Neurophysiol. 2005; 116: 35-42
        • Koski L.
        • Mernar T.J.
        • Dobkin B.H.
        Immediate and long-term changes in corticomotor output in response to rehabilitation: correlation with functional improvements in chronic stroke.
        Neurorehabil Neural Repair. 2004; 18: 230-249
        • Liepert J.
        • Graef S.
        • Uhde I.
        • Leidner O.
        • Weiller C.
        Training-induced changes of motor cortex representations in stroke patients.
        Acta Neurol Scand. 2000; 101: 321-326
        • Liepert J.
        • Miltner W.H.
        • Bauder H.
        • et al.
        Motor cortex plasticity during constraint-induced movement therapy in stroke patients.
        Neurosci Lett. 1998; 250: 5-8
        • Park S.W.
        • Butler A.J.
        • Cavalheiro V.
        • Alberts J.L.
        • Wolf S.L.
        Changes in serial optical topography and TMS during task performance after constraint-induced movement therapy in stroke: a case study.
        Neurorehabil Neural Repair. 2004; 18: 95-105
        • Ward N.S.
        • Cohen L.G.
        Mechanisms underlying recovery of motor function after stroke.
        Arch Neurol. 2004; 61: 1844-1848
        • Xerri C.
        • Merzenich M.M.
        • Peterson B.E.
        • Jenkins W.
        Plasticity of primary somatosensory cortex paralleling sensorimotor skill recovery from stroke in adult monkeys.
        J Neurophysiol. 1998; 79: 2119-2148
        • Jones T.A.
        • Kleim J.A.
        • Greenough W.T.
        Synaptogenesis and dendritic growth in the cortex opposite unilateral sensorimotor cortex damage in adult rats: a quantitative electron microscopic examination.
        Brain Res. 1996; 733: 142-148
        • Neumann-Haefelin T.
        • Witte O.W.
        Periinfarct and remote excitability changes after transient middle cerebral artery occlusion.
        J Cereb Blood Flow Metab. 2000; 20: 45-52
        • Hicks S.P.
        • D’Amato C.J.
        Motor-sensory and visual behavior after hemispherectomy in newborn and mature rats.
        Exp Neurol. 1970; 29: 416-438
        • Chen R.
        • Gerloff C.
        • Hallett M.
        • Cohen L.G.
        Involvement of the ipsilateral motor cortex in finger movements of different complexities.
        Ann Neurol. 1997; 41: 247-254
        • Calautti C.
        • Baron J.C.
        Functional neuroimaging studies of motor recovery after stroke in adults: a review.
        Stroke. 2003; 34: 1553-1566
        • Cramer S.C.
        Stroke recovery.
        Phys Med Rehabil Clin N Am. 1999; 10: 875-886
        • Cramer S.C.
        • Nelles G.
        • Benson R.R.
        • et al.
        A functional MRI study of subjects recovered from hemiparetic stroke.
        Stroke. 1997; 28: 2518-2527
        • Ward N.S.
        • Brown M.M.
        • Thompson A.J.
        • Frackowiak R.S.
        Neural correlates of outcome after stroke: a cross-sectional fMRI study.
        Brain. 2003; 126: 1430-1448
        • Ward N.S.
        • Brown M.M.
        • Thompson A.J.
        • Frackowiak R.S.
        Neural correlates of motor recovery after stroke: a longitudinal fMRI study.
        Brain. 2003; 126: 2476-2496
        • Small S.L.
        • Hlustik P.
        • Noll D.C.
        • Genovese C.
        • Solodkin A.
        Cerebellar hemispheric activation ipsilateral to the paretic hand correlates with functional recovery after stroke.
        Brain. 2002; 125: 1544-1557
        • Kim Y.H.
        • Jang S.H.
        • Byun W.M.
        • Han B.S.
        • Lee K.H.
        • Ahn S.H.
        Ipsilateral motor pathway confirmed by combined brain mapping of a patient with hemiparetic stroke: a case report.
        Arch Phys Med Rehabil. 2004; 85: 1351-1353
        • Muellbacher W.
        • Artner C.
        • Mamoli B.
        The role of the intact hemisphere in recovery of midline muscles after recent monohemispheric stroke.
        J Neurol. 1999; 246: 250-256
        • Butefisch C.M.
        • Netz J.
        • Wessling M.
        • Seitz R.J.
        • Homberg V.
        Remote changes in cortical excitability after stroke.
        Brain. 2003; 126: 470-481
        • Gerloff C.
        • Bushara K.
        • Sailer A.
        • et al.
        Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke.
        Brain. 2006; 129: 791-808
        • Johansen-Berg H.
        • Rushworth M.F.
        • Bogdanovic M.D.
        • Kischka U.
        • Wimalaratna S.
        • Matthews P.M.
        The role of ipsilateral premotor cortex in hand movement after stroke.
        Proc Natl Acad Sci U S A. 2002; 99: 14518-14523
        • Lotze M.
        • Markert J.
        • Sauseng P.
        • Hoppe J.
        • Plewnia C.
        • Gerloff C.
        The role of multiple contralesional motor areas for complex hand movements after internal capsular lesion.
        J Neurosci. 2006; 26: 6096-6102
        • Foltys H.
        • Krings T.
        • Meister I.G.
        • et al.
        Motor representation in patients rapidly recovering after stroke: a functional magnetic resonance imaging and transcranial magnetic stimulation study.
        Clin Neurophysiol. 2003; 114: 2404-2415
        • Turton A.
        • Wroe S.
        • Trepte N.
        • Fraser C.
        • Lemon R.N.
        Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke.
        Electroencephalogr Clin Neurophysiol. 1996; 101: 316-328
        • Fridman E.A.
        • Hanakawa T.
        • Chung M.
        • Hummel F.
        • Leiguarda R.C.
        • Cohen L.G.
        Reorganization of the human ipsilesional premotor cortex after stroke.
        Brain. 2004; 127: 747-758
        • Friel K.M.
        • Heddings A.A.
        • Nudo R.J.
        Effects of postlesion experience on behavioral recovery and neurophysiologic reorganization after cortical injury in primates.
        Neurorehabil Neural Repair. 2000; 14: 187-198
        • Nudo R.J.
        • Plautz E.J.
        • Frost S.B.
        Role of adaptive plasticity in recovery of function after damage to motor cortex.
        Muscle Nerve. 2001; 24: 1000-1019
        • Jaillard A.
        • Martin C.D.
        • Garambois K.
        • Lebas J.F.
        • Hommel M.
        Vicarious function within the human primary motor cortex?.
        Brain. 2005; 128: 1122-1138
        • Seitz R.J.
        • Butefisch C.M.
        • Kleiser R.
        • Homberg V.
        Reorganisation of cerebral circuits in human ischemic brain disease.
        Restor Neurol Neurosci. 2004; 22: 207-229
        • Butefisch C.M.
        • Kleiser R.
        • Korber B.
        • et al.
        Recruitment of contralesional motor cortex in stroke patients with recovery of hand function.
        Neurology. 2005; 64: 1067-1069
        • Liepert J.
        • Hamzei F.
        • Weiller C.
        Motor cortex disinhibition of the unaffected hemisphere after acute stroke.
        Muscle Nerve. 2000; 23: 1761-1763
        • Shimizu T.
        • Hosaki A.
        • Hino T.
        • et al.
        Motor cortical disinhibition in the unaffected hemisphere after unilateral cortical stroke.
        Brain. 2002; 125: 1896-1907
        • Martin P.I.
        • Naeser M.A.
        • Theoret H.
        • et al.
        Transcranial magnetic stimulation as a complementary treatment for aphasia.
        Semin Speech Lang. 2004; 25: 181-191
        • Winhuisen L.
        • Thiel A.
        • Schumacher B.
        • et al.
        Role of the contralateral inferior frontal gyrus in recovery of language function in poststroke aphasia: a combined repetitive transcranial magnetic stimulation and positron emission tomography study.
        Stroke. 2005; 36: 1759-1763
        • Traversa R.
        • Cicinelli P.
        • Bassi A.
        • Rossini P.M.
        • Bernardi G.
        Mapping of motor cortical reorganization after stroke.
        Stroke. 1997; 28: 110-117
        • Luft A.R.
        • McCombe-Waller S.
        • Whitall J.
        • et al.
        Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial [published erratum in: JAMA 2004;292:2470].
        JAMA. 2004; 292: 1853-1861
        • Rau C.
        • Plewnia C.
        • Hummel F.
        • Gerloff C.
        Event-related desynchronization and excitability of the ipsilateral motor cortex during simple self-paced finger movements.
        Clin Neurophysiol. 2003; 114: 1819-1826
        • Cicinelli P.
        • Traversa R.
        • Rossini P.M.
        Post-stroke reorganization of brain motor output to the hand: a 2-4 month follow-up with focal magnetic transcranial stimulation.
        Electroencephalogr Clin Neurophysiol. 1997; 105: 438-450
        • Traversa R.
        • Cicinelli P.
        • Oliveri M.
        • et al.
        Neurophysiological follow-up of motor cortical output in stroke patients.
        Clin Neurophysiol. 2000; 111: 1695-1703
        • Traversa R.
        • Cicinelli P.
        • Pasqualetti P.
        • Filippi M.
        • Rossini P.M.
        Follow-up of interhemispheric differences of motor evoked potentials from the ’affected’ and ’unaffected’ hemispheres in human stroke.
        Brain Res. 1998; 803: 1-8
        • Liepert J.
        • Storch P.
        • Fritsch A.
        • Weiller C.
        Motor cortex disinhibition in acute stroke.
        Clin Neurophysiol. 2000; 111: 671-676
        • Liepert J.
        • Bauder H.
        • Wolfgang H.R.
        • Miltner W.H.
        • Taub E.
        • Weiller C.
        Treatment-induced cortical reorganization after stroke in humans.
        Stroke. 2000; 31: 1210-1216
        • Boroojerdi B.
        • Diefenbach K.
        • Ferbert A.
        Transcallosal inhibition in cortical and subcortical cerebral vascular lesions.
        J Neurol Sci. 1996; 144: 160-170
        • Wittenberg G.F.
        • Chen R.
        • Ishii K.
        • et al.
        Constraint-induced therapy in stroke: magnetic-stimulation motor maps and cerebral activation.
        Neurorehabil Neural Repair. 2003; 17 ([published erratum in: Neurorehabil Neural Repair 2003;17:197]): 48-57
        • Cauraugh J.H.
        • Kim S.
        Two coupled motor recovery protocols are better than one: electromyogram-triggered neuromuscular stimulation and bilateral movements.
        Stroke. 2002; 33: 1589-1594
        • Mudie M.H.
        • Matyas T.A.
        Can simultaneous bilateral movement involve the undamaged hemisphere in reconstruction of neural networks damaged by stroke?.
        Disabil Rehabil. 2000; 22: 23-37
        • Whitall J.
        • McCombe Waller S.
        • Silver K.H.
        • Macko R.F.
        Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke.
        Stroke. 2000; 31: 2390-2395
        • Walter C.B.
        • Swinnen S.P.
        Asymmetric interlimb interference during the performance of a dynamic bimanual task.
        Brain Cogn. 1990; 14: 185-200
        • Harris-Love M.L.
        • McCombe Waller S.
        • Whitall J.
        Exploiting interlimb coupling to improve paretic arm reaching performance in people with chronic stroke.
        Arch Phys Med Rehabil. 2005; 86: 2131-2137
        • McCombe Waller S.
        • Whitall J.
        Central motor excitability with unilateral dominant, unilateral nondominant, and bilateral movement tasks in left and right handed adults [abstract].
        J Neurol Phys Ther. 2004; 28: 170
        • Celnik P.
        • Stefan K.
        • Hummel F.
        • Duque J.
        • Classen J.
        • Cohen L.G.
        Encoding a motor memory in the older adult by action observation.
        Neuroimage. 2005; 29: 677-684
        • Cicinelli P.
        • Marconi B.
        • Zaccagnini M.
        • Pasqualetti P.
        • Filippi M.M.
        • Rossini P.M.
        Imagery-induced cortical excitability changes in stroke: a transcranial magnetic stimulation study.
        Cereb Cortex. 2005; 16: 247-253
        • Platz T.
        • van Kaick S.
        • Moller L.
        • Freund S.
        • Winter T.
        • Kim I.H.
        Impairment-oriented training and adaptive motor cortex reorganisation after stroke: a fTMS study.
        J Neurol. 2005; 252: 1363-1371