Advertisement

Reliance on visual information after stroke. Part I: balance on dynamic posturography1

      Abstract

      Bonan IV, Colle FM, Guichard JP, Vicaut E, Eisenfisz M, Tran Ba Huy P, Yelnik AP. Reliance on visual information after stroke. Part I: Balance on dynamic posturography. Arch Phys Med Rehabil 2004;85:268–73.

      Objective

      To test the hypothesis that postural imbalance after stroke may be caused by inability to use pertinent somatosensory, vestibular, or visual information.

      Design

      Description of the sensory organization of patients with hemiplegia.

      Setting

      Public rehabilitation center in France.

      Participants

      Forty patients with hemiplegia after a single hemisphere stroke who were at least 12 months poststroke.

      Interventions

      Not applicable.

      Main outcome measures

      The patients performed computerized dynamic posturography (EquiTest), which is designed to assess a patient’s ability use sensory inputs separately and to effectively suppress inaccurate inputs in case of sensory conflict. Body stability under each of 6 sensory conditions was assessed by an equilibrium score (ES).

      Results

      In conditions of altered somatosensory information, with visual deprivation (ES5) or visuovestibular conflict (ES6), the median scores for patients with hemiplegia (ES5–43; ES6–20) were significantly lower than those for normal subjects (ES5–69; ES6–67).

      Conclusions

      Many patients with hemiplegia seem to rely on visual input. The mechanism of this excessive visual reliance is discussed. Rehabilitation programs of postural control for the patients with hemiplegia should take into account the possible impairment of sensory organization and should include exercises to be performed under conditions of sensory input deprivation and sensory conflict.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Archives of Physical Medicine and Rehabilitation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Horak F.B.
        Clinical assessment of balance disorders.
        Gait Posture. 1997; 6: 76-84
        • Bohannon R.W.
        • Larlin P.A.
        Lower extremity weight bearing under various standing conditions in independently ambulatory patients with hemiparesis.
        Phys Ther. 1985; 65: 1323-1325
        • Dickstein R.
        • Nissan M.
        • Pillar T.
        • Sheer D.
        Foot-ground pressure pattern of standing hemiplegic patients.
        Phys Ther. 1984; 64: 19-23
        • Sackley C.M.
        Falls, sway and symmetry of weight bearing after stroke.
        Int Disabil Stud. 1991; 13: 1-4
        • Shumway-Cook A.
        • Anson D.
        • Haller S.
        Postural sway-biofeedback.
        Arch Phys Med Rehabil. 1988; 69: 395-400
        • Di Fabio R.P.
        • Badke M.B.
        Extraneous movement associated with postural sway during dynamic goal-directed weight redistribution.
        Arch Phys Med Rehabil. 1990; 71: 365-371
        • Dietz V.
        • Berger W.
        Interlimb coordination of posture in patients with spastic paresis.
        Brain. 1984; 107: 965-978
        • Di Fabio R.P.
        • Badke M.B.
        Lower extremity antagonist muscle response following standing perturbation in subjects with cerebrovascular disease.
        Brain Res. 1987; 406: 43-51
        • Badke M.B.
        • Duncan P.W.
        Patterns of rapid motor responses during postural adjustments when standing in healthy subjects and hemiplegic patients.
        Phys Ther. 1983; 63: 13-17
        • Horak F.B.
        • Esselman P.
        • Anderson M.E.
        • Lynch M.K.
        The effects of movement velocity, mass displacement, and task certainty on associated postural adjustments made by normal and hemiplegic individuals.
        J Neurol Neurosurg Psychiatry. 1984; 47: 1020-1028
        • Nashner L.M.
        • Schumway-Cook A.
        • Marin O.
        Stance posture control in select groups of children with cerebral palsy.
        Exp Brain Res. 1983; 49: 393-409
        • Diener H.C.
        • Dichgans J.
        Pathophysiology of posture.
        in: Amblard B. Berthoz A. Clarac F. Posture and gait. Excerpta Medica, Amsterdam1988: 229-235
        • Garland S.J.
        • Stevenson T.J.
        • Ivanova T.
        Postural responses to unilateral arm perturbation in young, elderly, and hemiplegic subjects.
        Arch Phys Med Rehabil. 1997; 78: 1072-1077
        • Dettmann M.A.
        • Linder M.T.
        • Sepic S.B.
        Relationship among walking performance, postural stability and functional assessments of the hemiplegic patient.
        Am J Phys Med. 1987; 66: 77-90
        • Horak F.B.
        • Henry S.M.
        • Shumway-Cook A.
        Postural perturbations.
        Phys Ther. 1997; 77: 517-533
        • Merfeld D.M.
        • Zupan L.
        • Peterka R.J.
        Humans use internal models to estimate gravity and linear acceleration.
        Nature. 1999; 398: 615-618
        • Perennou D.A.
        • Leblond C.
        • Amblard B.
        • Micallef J.P.
        • Herisson C.
        • Pelissier J.Y.
        Transcutaneous electric nerve stimulation reduces neglect-related postural instability after stroke.
        Arch Phys Med Rehabil. 2001; 82: 440-448
        • Di Fabio R.P.
        • Badke M.B.
        Stance duration under sensory conflict conflict conditions in patients with hemiplegia.
        Arch Phys Med Rehabil. 1991; 72: 292-295
        • Brandt T.
        • Dieterich M.
        • Danek A.
        Vestibular cortex lesions affect the perception of verticality.
        Ann Neurol. 1994; 35: 403-412
        • Yelnik A.
        • Lebreton F.
        • Bonan I.
        • et al.
        Perception of verticality after recent cerebral hemispheric stroke.
        Stroke. 2002; 33: 2247-2253
        • Fridberg L.
        • Olsen T.S.
        • Roland P.E.
        • Paulson O.B.
        • Lassen N.A.
        Focal increase of blood flow in the cerebral cortex of man during vestibular stimulation.
        Brain. 1970; 93: 313-328
        • Coles M.G.
        • Gratton G.
        • Bashore T.R.
        • Eriksen C.W.
        • Donchin E.
        A psychophysiological investigation of the continuous flow model of human processing.
        J Exp Psychol. 1985; 11: 529-553
        • Faugier-Grimaud S.
        • Ventre J.
        Anatomic connections of inferior parietal cortex (area 7) with subcortical structures related to vestibulo-ocular function in a monkey.
        J Comp Neurol. 1989; 280: 1-14
        • Grüsser O.J.
        • Schreiter U.
        Localization and responses of neurons in the parieto-insular vestibular cortex of awake monkeys.
        J Physiol. 1990; 430: 537-557
        • Friedrich F.J.
        • Egly R.
        • Rafal R.D.
        • Beck D.
        Spatial attention deficits in humans.
        Neuropsychol. 1998; 12: 193-207
        • Miyai I.
        • Mauricio R.L.
        • Reding M.J.
        Parietal-insular strokes are associated with impaired standing balance as assessed by computerized dynamic posturography.
        J Neurol Rehabil. 1997; 11: 35-40
        • Rode G.
        • Tiliket C.
        • Harlopain P.
        • Boisson D.
        Postural asymmetry reduction by vestibular caloric stimulation in left hemiparetic patients.
        Scand J Rehabil Med. 1998; 30: 9-14
        • Nashner L.M.
        Computerized dynamic posturography.
        in: Jacobson G.P. Newman C.W. Kartush J.M. Handbook of balance function testing. Mosby-Year Book, St Louis1993: 280-307
        • Nashner L.M.
        • Black F.O.
        • Wall C.
        Adaptation to altered support and visual conditions during stance.
        J Neurosci. 1981; 25: 536-544
        • Black F.O.
        • Wall C.
        • Nashner L.M.
        Effects of visual and support surface orientation references upon postural control in vestibular deficient subjects.
        Acta Otolaryngol. 1983; 95: 199-210
        • Nashner L.M.
        • Peters J.F.
        Dynamic posturography in the diagnosis and management of dizziness and balance disorders.
        Neurol Clin. 1990; 82: 331-349
        • Voorhees R.L.
        Dynamic posturography findings in central nervous system disorders.
        Otolaryngol Head Neck Surg. 1990; 103: 96-101
        • Wolfson L.
        • Whipple R.
        • Derby C.A.
        • et al.
        A dynamic posturography study of balance in healthy elderly.
        Neurology. 1992; 42: 2069-2075
        • Gauthier L.
        • Dehaut F.
        • Joanette Y.
        The Bells Test for visual neglect.
        Int J Neuropsychol. 1989; 11: 49-54
        • Fugl-Meyer A.R.
        • Jäaskö L.
        • Leyman I.
        • Olsson S.
        • Steglind S.
        The post-stroke hemiplegic.
        Scand J Rehabil Med. 1975; 7: 13-31
      1. NeuroCom International Inc. EquiTest system operator’s manual. NeuroCom Int, Clackamas (OR)1987
      2. NeuroCom International Inc. EquiTest system operator’s manual. NeuroCom Int, Clackamas (OR)1988
        • Duvernoy H.M.
        The human brain. Springer, New York1991
        • Ford-Smith C.D.
        • Wyman J.F.
        • Elswick R.K.
        • Fernandez T.
        • Newton R.A.
        Test-retest reliability of the sensory organization test in noninstutionalized older adults.
        Arch Phys Med Rehabil. 1995; 76: 77-81
        • Ro T.
        • Cohen A.
        • Ivry R.B.
        • Rafal R.D.
        Response channel activation and the temporoparietal junction.
        Brain Cogn. 1998; 37: 461-476
        • Bottini G.
        • Karnath H.O.
        • Vallar G.
        • et al.
        Cerebral representations for egocentric space functional-anatomical evidence from caloric vestibular stimulation and neck vibration.
        Brain. 2001; 124: 1182-1196
        • Brandt T.
        • Bartenstein P.
        • Janek A.
        • Dieterich M.
        Reciprocal inhibitory visual-vestibular interaction.
        Brain. 1998; 121: 1749-1758
        • Bonan I.V.
        • Yelnik A.P.
        • Colle F.M.
        • et al.
        Reliance on visual information after stroke. Part II: Effectiveness of a balance rehabilitation program with visual cue deprivation after stroke: a randomized controlled trial.
        Arch Phys Med Rehabil. 2004; 85: 274-278
        • Hesse S.
        • Schauer M.
        • Melzic M.
        • Jahnke M.
        • Mauritz K.
        Quantitative analysis of rising from a chair in healthy and hemiparetic subjects.
        Scand J Rehabil Med. 1994; 26: 1-6
        • Rode G.
        • Tiliket C.
        • Boisson D.
        Predominance of postural imbalance in left hemiparetic patients.
        Scand J Rehabil Med. 1997; 29: 11-16