Neuroplasticity: An Appreciation From Synapse to System

      Abstract

      Gillick BT, Zirpel L. Neuroplasticity: an appreciation from synapse to system.

      Objective

      To integrate our functional knowledge in neurorehabilitation with a greater understanding of commonly held theories and current research in neuroplasticity.

      Design

      Literature review.

      Setting

      Not applicable.

      Participants

      Animal and human research.

      Interventions

      Interventions specific to application in humans: constraint-induced movement therapy, transcranial magnetic stimulation, and transcranial direct current stimulation.

      Main Outcome Measures

      Cortical excitability, blood oxygen level–dependent signal, and functional outcomes.

      Results

      There is increasing evidence elucidating the cellular and molecular mechanisms of plasticity of the nervous system including growth, modification, degradation, and even death of neurons. Some of these mechanisms directly correlate with therapy-induced behavioral changes, and all provide an understanding of the response of the nervous system to altered inputs. The understanding of neural correlates of behavior can then form the foundation for more productive, comprehensive interventions.

      Conclusions

      The focus of recent research surrounds translational projects aimed at enhancing clinical outcomes. Knowledge of mechanisms underlying this adaptability is the foundation for our treatments, diagnoses, and prognoses. The increasing understanding of the mechanisms underlying neuroplasticity can guide, direct, and focus the practice of current and future therapies to greater efficacy and better functional outcomes in clinical rehabilitation.

      Key Words

      List of Abbreviations:

      AMPA ( α-amino-3-hydroxyl-5-methyl-4-isoxazole propionate), BDNF ( brain-derived neurotrophic factor), CaMK ( calcium/calmodulin-dependent kinase), CIMT ( constraint-induced movement therapy), CREB ( cyclic adenosine monophosphate response element-binding protein), EPSP ( excitatory postsynaptic potential), fMRI ( functional magnetic resonance imaging), GABA ( γ-aminobutyric acid), HABIT ( hand-arm intensive bimanual therapy), IHI ( interhemispheric inhibition), IPSP ( inhibitory postsynaptic potential), LTD ( long-term depression), LTP ( long-term potentiation), MEP ( motor-evoked potential), NGF ( nerve growth factor), NMDA ( N-methyl-d-aspartate), PMF ( pulsed magnetic field), rTMS ( repetitive transcranial magnetic stimulation), tDCS ( transcranial direct current stimulation), TMS ( transcranial magnetic stimulation)

      References

        • Galvan A.
        Neural plasticity of development and learning.
        Hum Brain Mapp. 2010; 31: 879-890
        • Ramón y Cajal S.R.Y.
        Advice for a young investigator.
        MIT Pr, Cambridge1999
        • Tansey E.M.
        Not committing barbarisms: Sherrington and the synapse, 1897.
        Brain Res Bull. 1997; 44: 211-212
        • Brown R.E.
        • Milner P.M.
        The legacy of Donald O. Hebb: more than the Hebb synapse.
        Nat Rev Neurosci. 2003; 4: 1013-1019
        • Irlbacher K.
        • Brocke J.
        • Mechow J.V.
        • Brandt S.A.
        Effects of GABA(A) and GABA(B) agonists on interhemispheric inhibition in man.
        Clin Neurophysiol. 2007; 118: 308-316
        • Butefisch C.M.
        • Davis B.C.
        • Wise S.P.
        • et al.
        Mechanisms of use-dependent plasticity in the human motor cortex.
        Proc Natl Acad Sci U S A. 2000; 97: 3661-3665
        • Bliss T.V.
        • Lomo T.
        Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path.
        J Physiol. 1973; 232: 331-356
        • Kulak W.
        • Sobaniec W.
        Molecular mechanisms of brain plasticity: neurophysiologic and neuroimaging studies in the developing patients.
        Rocz Akad Med Bialymst. 2004; 49: 227-236
        • Huerta P.T.
        • Volpe B.T.
        Transcranial magnetic stimulation, synaptic plasticity and network oscillations.
        J Neuroeng Rehabil. 2009; 6: 7
        • Pang Z.P.
        • Cao P.
        • Xu W.
        • Sudhof T.C.
        Calmodulin controls synaptic strength via presynaptic activation of calmodulin kinase II.
        J Neurosci. 2010; 30: 4132-4142
        • Nonaka M.
        A Janus-like role of CREB protein: enhancement of synaptic property in mature neurons and suppression of synaptogenesis and reduced network synchrony in early development.
        J Neurosci. 2009; 29: 6389-6391
        • Engert F.
        • Bonhoeffer T.
        Dendritic spine changes associated with hippocampal long-term synaptic plasticity.
        Nature. 1999; 399: 66-70
        • Mulkey R.M.
        • Herron C.E.
        • Malenka R.C.
        An essential role for protein phosphatases in hippocampal long-term depression.
        Science. 1993; 261: 1051-1055
        • Shi S.H.
        • Hayashi Y.
        • Petralia R.S.
        • et al.
        Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation.
        Science. 1999; 284: 1811-1816
        • Macias M.Y.
        • Battocletti J.H.
        • Sutton C.H.
        • Pintar F.A.
        • Maiman D.J.
        Directed and enhanced neurite growth with pulsed magnetic field stimulation.
        Bioelectromagnetics. 2000; 21: 272-286
        • Schimmelpfeng J.
        • Weibezahn K.F.
        • Dertinger H.
        Neuronal outgrowth of PC-12 cells after combined treatment with nerve growth factor and a magnetic field: influence of the induced electric field strength.
        Bioelectromagnetics. 2005; 26: 74-77
        • Rotem A.
        • Moses E.
        Magnetic stimulation of one-dimensional neuronal cultures.
        Biophys J. 2008; 94: 5065-5078
        • Kim S.
        • Im W.S.
        • Kang L.
        • Lee S.T.
        • Chu K.
        • Kim B.I.
        The application of magnets directs the orientation of neurite outgrowth in cultured human neuronal cells.
        J Neurosci Methods. 2008; 174: 91-96
        • Myers W.A.
        • Churchill J.D.
        • Muja N.
        • Garraghty P.E.
        Role of NMDA receptors in adult primate cortical somatosensory plasticity.
        J Comp Neurol. 2000; 418: 373-382
        • Georgopoulos A.P.
        • Stefanis C.N.
        Local shaping of function in the motor cortex: motor contrast, directional tuning.
        Brain Res Rev. 2007; 55: 383-389
        • Constantine-Paton M.
        Pioneers of cortical plasticity: six classic papers by Wiesel and Hubel.
        J Neurophysiol. 2008; 99: 2741-2744
        • Hubel D.H.
        • Wiesel T.N.
        Binocular interaction in striate cortex of kittens reared with artificial squint.
        J Neurophysiol. 1965; 28: 1041-1059
        • Wiesel T.N.
        • Hubel D.H.
        Extent of recovery from the effects of visual deprivation in kittens.
        J Neurophysiol. 1965; 28: 1060-1072
        • Wiesel T.N.
        • Hubel D.H.
        Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens.
        J Neurophysiol. 1965; 28: 1029-1040
        • Hubel D.H.
        • Wiesel T.N.
        Receptive files of cells in striate cortex of very young, visually inexperienced kittens.
        J Neurophysiology. 1963; 26: 994-1002
        • Wiesel T.N.
        • Hubel D.H.
        Effects of visual deprivation on morphology and physiology of cells in the cats lateral geniculate body.
        J Neurophysiol. 1963; 26: 978-993
        • Wiesel T.N.
        • Hubel D.H.
        Single-cell responses in striate cortex of kittens deprived of vision in one eye.
        J Neurophysiol. 1963; 26: 1003-1017
        • Wandell B.A.
        • Smirnakis S.M.
        Plasticity and stability of visual field maps in adult primary visual cortex.
        Nat Rev Neurosci. 2009; 10: 873-884
        • Nudo R.J.
        • Milliken G.W.
        • Jenkins W.M.
        • Merzenich M.M.
        Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys.
        J Neurosci. 1996; 16: 785-807
        • Nudo R.J.
        • Wise B.M.
        • Sifuentes F.
        • Milliken G.W.
        Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct.
        Science. 1996; 272: 1791-1794
        • Wang X.
        • Merzenich M.M.
        • Sameshima K.
        • Jenkins W.M.
        Remodelling of hand representation in adult cortex determined by timing of tactile stimulation.
        Nature. 1995; 378: 71-75
        • Kimberley T.J.
        • Lewis S.M.
        Understanding neuroimaging.
        Phys Ther. 2007; 87: 670-683
        • Heeger D.J.
        • Ress D.
        What does fMRI tell us about neuronal activity?.
        Nat Rev Neurosci. 2002; 3: 142-151
        • Logothetis N.K.
        • Pauls J.
        • Augath M.
        • Trinath T.
        • Oeltermann A.
        Neurophysiological investigation of the basis of the fMRI signal.
        Nature. 2001; 412: 150-157
        • Johansen-Berg H.
        • Dawes H.
        • Guy C.
        • Smith S.M.
        • Wade D.T.
        • Matthews P.M.
        Correlation between motor improvements and altered fMRI activity after rehabilitative therapy.
        Brain. 2002; 125: 2731-2742
        • Sutcliffe T.L.
        • Gaetz W.C.
        • Logan W.J.
        • Cheyne D.O.
        • Fehlings D.L.
        Cortical reorganization after modified constraint-induced movement therapy in pediatric hemiplegic cerebral palsy.
        J Child Neurol. 2007; 22: 1281-1287
        • Carey J.R.
        • Kimberley T.J.
        • Lewis S.M.
        • et al.
        Analysis of fMRI and finger tracking training in subjects with chronic stroke.
        Brain. 2002; 125: 773-788
        • van Meer M.P.
        • van der Marel K.
        • Wang K.
        • et al.
        Recovery of sensorimotor function after experimental stroke correlates with restoration of resting-state interhemispheric functional connectivity.
        J Neurosci. 2010; 30: 3964-3967
        • Barker A.T.
        • Freeston I.L.
        • Jalinous R.
        • Jarratt J.A.
        Motor responses to non-invasive brain stimulation in clinical practice.
        Electroencephalogr Clin Neurophysiol. 1985; 61: S70
        • Barker A.T.
        • Freeston I.L.
        • Jalinous R.
        • Jarratt J.A.
        Magnetic stimulation of the human brain and peripheral nervous system: an introduction and the results of an initial clinical evaluation.
        Neurosurgery. 1987; 20: 100-109
        • Pascual-Leone A.
        • Freitas C.
        • Oberman L.
        • et al.
        Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI.
        Brain Topogr. 2011; 24: 302-315
        • Carey J.R.
        • Anderson D.C.
        • Gillick B.T.
        • Whitford M.
        • Pascual-Leone A.
        6-Hz primed low-frequency rTMS to contralesional M1 in two cases with middle cerebral artery stroke.
        Neurosci Lett. 2010; 469: 338-342
        • Wheaton L.A.
        • Villagra F.
        • Hanley D.F.
        • Macko R.F.
        • Forrester L.W.
        Reliability of TMS motor evoked potentials in quadriceps of subjects with chronic hemiparesis after stroke.
        J Neurol Sci. 2009; 276: 115-117
        • Eyre J.A.
        • Smith M.
        • Dabydeen L.
        • et al.
        Is hemiplegic cerebral palsy equivalent to amblyopia of the corticospinal system?.
        Ann Neurol. 2007; 62: 493-503
        • Hoare B.J.
        • Wasiak J.
        • Imms C.
        • Carey L.
        Constraint-induced movement therapy in the treatment of the upper limb in children with hemiplegic cerebral palsy.
        Cochrane Database Syst Rev. 2007; (CD004149)
        • Wolf S.L.
        • Winstein C.J.
        • Miller J.P.
        • et al.
        Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial.
        JAMA. 2006; 296: 2095-2104
        • Liepert J.
        • Bauder H.
        • Wolfgang H.R.
        • Miltner W.H.
        • Taub E.
        • Weiller C.
        Treatment-induced cortical reorganization after stroke in humans.
        Stroke. 2000; 31: 1210-1216
        • Shi Y.X.
        • Tian F.H.
        • Yang K.H.
        • Zhao Y.
        Modified constraint-induced movement therapy versus traditional rehabilitation in patients with upper-extremity dysfunction after stroke: a systematic review and meta-analysis.
        Arch Phys Med Rehabil. 2011; 92: 972-982
        • Taub E.
        • Uswatte G.
        • Pidikiti R.
        Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation—a clinical review.
        J Rehabil Res Dev. 1999; 36: 237-251
        • Case-Smith J.
        • DeLuca S.C.
        • Stevenson R.
        • Ramey S.L.
        Multicenter randomized controlled trial of pediatric constraint-induced movement therapy: 6-month follow-up.
        Am J Occup Ther. 2012; 66: 15-23
        • Gordon A.M.
        • Hung Y.
        • Brandao M.
        • et al.
        Bimanual training and constraint-induced movement therapy in children with hemiplegic cerebral palsy: a randomized trial.
        Neurorehabil Neural Repair. 2011; 25: 692-702
        • Gillick B.T.
        • Koppes A.
        Gross motor outcomes in children with hemiparesis involved in a modified constraint-induced therapy program.
        J Pediatr Rehabil Med. 2010; 3: 171-175
        • Zipp G.P.
        • Winning S.
        Effects of constraint-induced movement therapy on gait, balance, and functional locomotor mobility.
        Pediatr Phys Ther. 2012; 24: 64-68
        • Romero J.R.
        • Anschel D.
        • Sparing R.
        • Gangitano M.
        • Pascual-Leone A.
        Subthreshold low frequency repetitive transcranial magnetic stimulation selectively decreases facilitation in the motor cortex.
        Clin Neurophysiol. 2002; 113: 101-107
        • Eyre J.A.
        • Taylor J.P.
        • Villagra F.
        • Smith M.
        • Miller S.
        Evidence of activity-dependent withdrawal of corticospinal projections during human development.
        Neurology. 2001; 57: 1543-1554
        • Kuhnke N.
        • Juenger H.
        • Walther M.
        • Berweck S.
        • Mall V.
        • Staudt M.
        Do patients with congenital hemiparesis and ipsilateral corticospinal projections respond differently to constraint-induced movement therapy?.
        Dev Med Child Neurol. 2008; 50: 898-903
        • Sohn Y.H.
        • Jung H.Y.
        • Kaelin-Lang A.
        • Hallett M.
        Excitability of the ipsilateral motor cortex during phasic voluntary hand movement.
        Exp Brain Res. 2003; 148: 176-185
        • Heinen F.
        • Glocker F.X.
        • Fietzek U.
        • Meyer B.U.
        • Lucking C.H.
        • Korinthenberg R.
        Absence of transcallosal inhibition following focal magnetic stimulation in preschool children.
        Ann Neurol. 1998; 43: 608-612
        • Heinen F.
        • Kirschner J.
        • Fietzek U.
        • Glocker F.X.
        • Mall V.
        • Korinthenberg R.
        Absence of transcallosal inhibition in adolescents with diplegic cerebral palsy.
        Muscle Nerve. 1999; 22: 255-257
        • Moll G.H.
        • Heinrich H.
        • Wischer S.
        • Tergau F.
        • Paulus W.
        • Rothenberger A.
        Motor system excitability in healthy children: developmental aspects from transcranial magnetic stimulation.
        Electroencephalogr Clin Neurophysiol Suppl. 1999; 51: 243-249
        • Buchkremer-Ratzmann I.
        • Witte O.W.
        Extended brain disinhibition following small photothrombotic lesions in rat frontal cortex.
        Neuroreport. 1997; 8: 519-522
        • Harauzov A.
        • Spolidoro M.
        • DiCristo G.
        • et al.
        Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity.
        J Neurosci. 2010; 30: 361-371
        • Duque J.
        • Murase N.
        • Celnik P.
        • et al.
        Intermanual differences in movement-related interhemispheric inhibition.
        J Cogn Neurosci. 2007; 19: 204-213
        • Murase N.
        • Duque J.
        • Mazzocchio R.
        • Cohen L.G.
        Influence of interhemispheric interactions on motor function in chronic stroke.
        Ann Neurol. 2004; 55: 400-409
        • Kirton A.
        • Chen R.
        • Friefeld S.
        • Gunraj C.
        • Pontigon A.M.
        • Deveber G.
        Contralesional repetitive transcranial magnetic stimulation for chronic hemiparesis in subcortical paediatric stroke: a randomised trial.
        Lancet Neurol. 2008; 7: 507-513
        • Kirton A.
        • Deveber G.
        • Gunraj C.
        • Chen R.
        Cortical excitability and interhemispheric inhibition after subcortical pediatric stroke: plastic organization and effects of rTMS.
        Clin Neurophysiol. 2010; 121: 1922-1929
        • Takeuchi N.
        • Chuma T.
        • Matsuo Y.
        • Watanabe I.
        • Ikoma K.
        Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke.
        Stroke. 2005; 36: 2681-2686
        • Bolognini N.
        • Vallar G.
        • Casati C.
        • et al.
        Neurophysiological and behavioral effects of tDCS combined with constraint-induced movement therapy in poststroke patients.
        Neurorehabil Neural Repair. 2011; 25: 819-829
        • Nitsche M.A.
        • Cohen L.G.
        • Wassermann E.M.
        • et al.
        Transcranial direct current stimulation: state of the art 2008.
        Brain Stimul. 2008; 1: 206-223
        • Lindenberg R.
        • Renga V.
        • Zhu L.L.
        • Nair D.
        • Schlaug G.
        Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients.
        Neurology. 2010; 75: 2176-2184
        • Holt R.L.
        • Mikati M.A.
        Care for child development: basic science rationale and effects of interventions.
        Pediatr Neurol. 2011; 44: 239-253
        • Schuster C.
        • Maunz G.
        • Lutz K.
        • Kischka U.
        • Sturzenegger R.
        • Ettlin T.
        Dexamphetamine improves upper extremity outcome during rehabilitation after stroke: a pilot randomized controlled trial.
        Neurorehabil Neural Repair. 2011; 25: 749-755
        • Majeed F.
        • Kamal A.K.
        Can selective serotonin reuptake inhibitors (SSRI) improve motor recovery after stroke?.
        J Pak Med Assoc. 2011; 61: 1147-1148
        • McDonnell M.N.
        • Orekhov Y.
        • Ziemann U.
        The role of GABA(B) receptors in intracortical inhibition in the human motor cortex.
        Exp Brain Res. 2006; 173: 86-93
        • Rioult-Pedotti M.S.
        • Friedman D.
        • Donoghue J.P.
        Learning-induced LTP in neocortex.
        Science. 2000; 290: 533-536
        • Kleim J.A.
        • Barbay S.
        • Cooper N.R.
        • et al.
        Motor learning-dependent synaptogenesis is localized to functionally reorganized motor cortex.
        Neurobiol Learn Mem. 2002; 77: 63-77